ZeroTierOne/core/Capability.cpp
2020-06-05 13:04:37 -07:00

417 lines
13 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Capability.hpp"
#include "Utils.hpp"
#include "Constants.hpp"
#include "MAC.hpp"
namespace ZeroTier {
bool Capability::sign(const Identity &from, const Address &to) noexcept
{
uint8_t buf[ZT_CAPABILITY_MARSHAL_SIZE_MAX + 16];
m_issuedTo = to;
m_signedBy = from.address();
m_signatureLength = from.sign(buf, (unsigned int) marshal(buf, true), m_signature, sizeof(m_signature));
return m_signatureLength > 0;
}
int Capability::marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX], const bool forSign) const noexcept
{
int p = 0;
if (forSign) {
for (int k = 0;k < 8;++k)
data[p++] = 0x7f;
}
Utils::storeBigEndian<uint64_t>(data + p, m_nwid);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_ts);
p += 8;
Utils::storeBigEndian<uint32_t>(data + p, m_id);
p += 4;
Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_ruleCount);
p += 2;
p += Capability::marshalVirtualNetworkRules(data + p, m_rules, m_ruleCount);
// LEGACY: older versions supported multiple records with this being a maximum custody
// chain length. This is deprecated so set the max chain length to one.
data[p++] = (uint8_t) 1;
if (!forSign) {
m_issuedTo.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
m_signedBy.copyTo(data + 0);
p += ZT_ADDRESS_LENGTH;
data[p++] = 1; // LEGACY: old versions require a reserved byte here
Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_signatureLength);
p += 2;
Utils::copy(data + p, m_signature, m_signatureLength);
p += (int) m_signatureLength;
// LEGACY: older versions supported more than one record terminated by a zero address.
for (int k = 0;k < ZT_ADDRESS_LENGTH;++k)
data[p++] = 0;
}
data[p++] = 0;
data[p++] = 0; // uint16_t size of additional fields, currently 0
if (forSign) {
for (int k = 0;k < 8;++k)
data[p++] = 0x7f;
}
return p;
}
int Capability::unmarshal(const uint8_t *data, int len) noexcept
{
if (len < 22)
return -1;
m_nwid = Utils::loadBigEndian<uint64_t>(data);
m_ts = (int64_t) Utils::loadBigEndian<uint64_t>(data + 8);
m_id = Utils::loadBigEndian<uint32_t>(data + 16);
const unsigned int rc = Utils::loadBigEndian<uint16_t>(data + 20);
if (rc > ZT_MAX_CAPABILITY_RULES)
return -1;
const int rulesLen = unmarshalVirtualNetworkRules(data + 22, len - 22, m_rules, m_ruleCount, rc);
if (rulesLen < 0)
return rulesLen;
int p = 22 + rulesLen;
if (p >= len)
return -1;
++p; // LEGACY: skip old max record count
// LEGACY: since it was once supported to have multiple records, scan them all. Since
// this feature was never used, just set the signature and issued to and other related
// fields each time and we should only ever see one. If there's more than one and the
// last is not the controller, this credential will just fail validity check.
for (unsigned int i = 0;;++i) {
if ((p + ZT_ADDRESS_LENGTH) > len)
return -1;
const Address to(data + p);
p += ZT_ADDRESS_LENGTH;
if (!to)
break;
m_issuedTo = to;
if ((p + ZT_ADDRESS_LENGTH) > len)
return -1;
m_signedBy.setTo(data + p);
p += ZT_ADDRESS_LENGTH + 1; // LEGACY: +1 to skip reserved field
if ((p + 2) > len)
return -1;
m_signatureLength = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
if ((m_signatureLength > sizeof(m_signature)) || ((p + (int) m_signatureLength) > len))
return -1;
Utils::copy(m_signature, data + p, m_signatureLength);
p += (int) m_signatureLength;
}
if ((p + 2) > len)
return -1;
p += 2 + Utils::loadBigEndian<uint16_t>(data + p);
if (p > len)
return -1;
return p;
}
int Capability::marshalVirtualNetworkRules(uint8_t *data, const ZT_VirtualNetworkRule *const rules, const unsigned int ruleCount) noexcept
{
int p = 0;
for (unsigned int i = 0;i < ruleCount;++i) {
data[p++] = rules[i].t;
switch ((ZT_VirtualNetworkRuleType) (rules[i].t & 0x3fU)) {
default:
data[p++] = 0;
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
data[p++] = 14;
Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.fwd.address);
p += 8;
Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.fwd.flags);
p += 4;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.fwd.length);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
data[p++] = 5;
Address(rules[i].v.zt).copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.vlanId);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
data[p++] = 1;
data[p++] = rules[i].v.vlanPcp;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
data[p++] = 1;
data[p++] = rules[i].v.vlanDei;
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
data[p++] = 6;
MAC(rules[i].v.mac).copyTo(data + p);
p += 6;
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
data[p++] = 5;
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[0];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[1];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[2];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[3];
data[p++] = rules[i].v.ipv4.mask;
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
data[p++] = 17;
Utils::copy<16>(data + p, rules[i].v.ipv6.ip);
p += 16;
data[p++] = rules[i].v.ipv6.mask;
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
data[p++] = 3;
data[p++] = rules[i].v.ipTos.mask;
data[p++] = rules[i].v.ipTos.value[0];
data[p++] = rules[i].v.ipTos.value[1];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
data[p++] = 1;
data[p++] = rules[i].v.ipProtocol;
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.etherType);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
data[p++] = 3;
data[p++] = rules[i].v.icmp.type;
data[p++] = rules[i].v.icmp.code;
data[p++] = rules[i].v.icmp.flags;
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.port[0]);
p += 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.port[1]);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
data[p++] = 8;
Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.characteristics);
p += 8;
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.frameSize[0]);
p += 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.frameSize[1]);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
data[p++] = 4;
Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.randomProbability);
p += 4;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
data[p++] = 8;
Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.tag.id);
p += 4;
Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.tag.value);
p += 4;
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
data[p++] = 19;
Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.intRange.start);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.intRange.start + (uint64_t) rules[i].v.intRange.end);
p += 8;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.intRange.idx);
p += 2;
data[p++] = rules[i].v.intRange.format;
break;
}
}
return p;
}
int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data, const int len, ZT_VirtualNetworkRule *const rules, unsigned int &ruleCount, const unsigned int maxRuleCount) noexcept
{
int p = 0;
unsigned int rc = 0;
while (rc < maxRuleCount) {
if (p >= len)
return -1;
rules[ruleCount].t = data[p++];
const int fieldLen = (int) data[p++];
if ((p + fieldLen) > len)
return -1;
switch ((ZT_VirtualNetworkRuleType) (rules[ruleCount].t & 0x3fU)) {
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
if ((p + 14) > len) return -1;
rules[ruleCount].v.fwd.address = Utils::loadBigEndian<uint64_t>(data + p);
p += 8;
rules[ruleCount].v.fwd.flags = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
rules[ruleCount].v.fwd.length = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
if ((p + ZT_ADDRESS_LENGTH) > len) return -1;
rules[ruleCount].v.zt = Address(data + p).toInt();
p += ZT_ADDRESS_LENGTH;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
if ((p + 2) > len) return -1;
rules[ruleCount].v.vlanId = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
if ((p + 1) > len) return -1;
rules[ruleCount].v.vlanPcp = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
if ((p + 1) > len) return -1;
rules[ruleCount].v.vlanDei = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
if ((p + 6) > len) return -1;
Utils::copy<6>(rules[ruleCount].v.mac, data + p);
p += 6;
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((p + 5) > len) return -1;
Utils::copy<4>(&(rules[ruleCount].v.ipv4.ip), data + p);
p += 4;
rules[ruleCount].v.ipv4.mask = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((p + 17) > len) return -1;
Utils::copy<16>(rules[ruleCount].v.ipv6.ip, data + p);
p += 16;
rules[ruleCount].v.ipv6.mask = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((p + 3) > len) return -1;
rules[ruleCount].v.ipTos.mask = data[p++];
rules[ruleCount].v.ipTos.value[0] = data[p++];
rules[ruleCount].v.ipTos.value[1] = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((p + 1) > len) return -1;
rules[ruleCount].v.ipProtocol = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
if ((p + 2) > len) return -1;
rules[ruleCount].v.etherType = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
if ((p + 3) > len) return -1;
rules[ruleCount].v.icmp.type = data[p++];
rules[ruleCount].v.icmp.code = data[p++];
rules[ruleCount].v.icmp.flags = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((p + 4) > len) return -1;
rules[ruleCount].v.port[0] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
rules[ruleCount].v.port[1] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
if ((p + 8) > len) return -1;
rules[ruleCount].v.characteristics = Utils::loadBigEndian<uint64_t>(data + p);
p += 8;
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
if ((p + 4) > len) return -1;
rules[ruleCount].v.frameSize[0] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
rules[ruleCount].v.frameSize[1] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
if ((p + 4) > len) return -1;
rules[ruleCount].v.randomProbability = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
if ((p + 4) > len) return -1;
rules[ruleCount].v.tag.id = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
rules[ruleCount].v.tag.value = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
if ((p + 19) > len) return -1;
rules[ruleCount].v.intRange.start = Utils::loadBigEndian<uint64_t>(data + p);
p += 8;
rules[ruleCount].v.intRange.end = (uint32_t) (Utils::loadBigEndian<uint64_t>(data + p) - rules[ruleCount].v.intRange.start);
p += 8;
rules[ruleCount].v.intRange.idx = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
rules[ruleCount].v.intRange.format = data[p++];
break;
}
p += fieldLen;
++rc;
}
ruleCount = rc;
return p;
}
} // namespace ZeroTier