ZeroTierOne/core/Network.cpp
2020-06-05 13:04:37 -07:00

1541 lines
54 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <cstring>
#include <cstdlib>
#include "Constants.hpp"
#include "Network.hpp"
#include "RuntimeEnvironment.hpp"
#include "MAC.hpp"
#include "Address.hpp"
#include "InetAddress.hpp"
#include "NetworkController.hpp"
#include "Peer.hpp"
#include "Trace.hpp"
#include "ScopedPtr.hpp"
#include "Buf.hpp"
#include <set>
namespace ZeroTier {
namespace {
// Returns true if packet appears valid; pos and proto will be set
bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto) noexcept
{
if (frameLen < 40)
return false;
pos = 40;
proto = frameData[6];
while (pos <= frameLen) {
switch(proto) {
case 0: // hop-by-hop options
case 43: // routing
case 60: // destination options
case 135: // mobility options
if ((pos + 8) > frameLen)
return false; // invalid!
proto = frameData[pos];
pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
break;
//case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
//case 50:
//case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
default:
return true;
}
}
return false; // overflow == invalid
}
enum _doZtFilterResult
{
DOZTFILTER_NO_MATCH,
DOZTFILTER_DROP,
DOZTFILTER_REDIRECT,
DOZTFILTER_ACCEPT,
DOZTFILTER_SUPER_ACCEPT
};
_doZtFilterResult _doZtFilter(
const RuntimeEnvironment *RR,
Trace::RuleResultLog &rrl,
const NetworkConfig &nconf,
const Membership *membership, // can be NULL
const bool inbound,
const Address &ztSource,
Address &ztDest, // MUTABLE -- is changed on REDIRECT actions
const MAC &macSource,
const MAC &macDest,
const uint8_t *const frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId,
const ZT_VirtualNetworkRule *rules, // cannot be NULL
const unsigned int ruleCount,
Address &cc, // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise
unsigned int &ccLength, // MUTABLE -- set to length of packet payload to TEE
bool &ccWatch, // MUTABLE -- set to true for WATCH target as opposed to normal TEE
uint8_t &qosBucket) noexcept // MUTABLE -- set to the value of the argument provided to PRIORITY
{
// Set to true if we are a TEE/REDIRECT/WATCH target
bool superAccept = false;
// The default match state for each set of entries starts as 'true' since an
// ACTION with no MATCH entries preceding it is always taken.
uint8_t thisSetMatches = 1;
rrl.clear();
for(unsigned int rn=0;rn<ruleCount;++rn) {
const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3fU);
// First check if this is an ACTION
if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) {
if (thisSetMatches) {
switch(rt) {
case ZT_NETWORK_RULE_ACTION_PRIORITY:
qosBucket = (rules[rn].v.qosBucket >= 0 && rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority)
return DOZTFILTER_ACCEPT;
case ZT_NETWORK_RULE_ACTION_DROP:
return DOZTFILTER_DROP;
case ZT_NETWORK_RULE_ACTION_ACCEPT:
return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet
// These are initially handled together since preliminary logic is common
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: {
const Address fwdAddr(rules[rn].v.fwd.address);
if (fwdAddr == ztSource) {
// Skip as no-op since source is target
} else if (fwdAddr == RR->identity.address()) {
if (inbound) {
return DOZTFILTER_SUPER_ACCEPT;
} else {
}
} else if (fwdAddr == ztDest) {
} else {
if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) {
ztDest = fwdAddr;
return DOZTFILTER_REDIRECT;
} else {
cc = fwdAddr;
ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen;
ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH);
}
}
} continue;
case ZT_NETWORK_RULE_ACTION_BREAK:
return DOZTFILTER_NO_MATCH;
// Unrecognized ACTIONs are ignored as no-ops
default:
continue;
}
} else {
// If this is an incoming packet and we are a TEE or REDIRECT target, we should
// super-accept if we accept at all. This will cause us to accept redirected or
// tee'd packets in spite of MAC and ZT addressing checks.
if (inbound) {
switch(rt) {
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
if (RR->identity.address().toInt() == rules[rn].v.fwd.address)
superAccept = true;
break;
default:
break;
}
}
thisSetMatches = 1; // reset to default true for next batch of entries
continue;
}
}
// Circuit breaker: no need to evaluate an AND if the set's match state
// is currently false since anything AND false is false.
if ((!thisSetMatches)&&(!(rules[rn].t & 0x40U))) {
rrl.logSkipped(rn,thisSetMatches);
continue;
}
// If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result])
uint8_t thisRuleMatches = 0;
uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed
switch(rt) {
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt());
break;
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt());
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
// NOT SUPPORTED YET
thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macSource);
break;
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macDest);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12),4,0)));
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16),4,0)));
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8),16,0)));
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24),16,0)));
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1]));
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
const uint8_t tosMasked = (((frameData[0] << 4U) & 0xf0U) | ((frameData[1] >> 4U) & 0x0fU)) & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1]));
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]);
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto);
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
if (frameData[9] == 0x01) { // IP protocol == ICMP
const unsigned int ihl = (frameData[0] & 0xfU) * 4;
if (frameLen >= (ihl + 2)) {
if (rules[rn].v.icmp.type == frameData[ihl]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[ihl+1] == rules[rn].v.icmp.code);
} else {
thisRuleMatches = 1;
}
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
if ((proto == 0x3a)&&(frameLen >= (pos+2))) {
if (rules[rn].v.icmp.type == frameData[pos]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[pos+1] == rules[rn].v.icmp.code);
} else {
thisRuleMatches = 1;
}
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
int p = -1;
switch(frameData[9]) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (headerLen + 4)) {
unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0);
p = (int)(frameData[pos++] << 8U);
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
int p = -1;
switch(proto) { // IP protocol number
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (pos + 4)) {
if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2;
p = (int)(frameData[pos++] << 8U);
p |= (int)frameData[pos];
}
break;
}
thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
} else {
thisRuleMatches = 0;
}
} else {
thisRuleMatches = 0;
}
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: {
uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL;
if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST;
if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST;
if (ownershipVerificationMask == 1) {
ownershipVerificationMask = 0;
InetAddress src;
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) {
src.set((const void *)(frameData + 12),4,0);
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) {
// IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local.
if ( (frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87)||(frameData[40] == 0x88)) ) {
if (frameData[40] == 0x87) {
// Neighbor solicitations contain no reliable source address, so we implement a small
// hack by considering them authenticated. Otherwise you would pretty much have to do
// this manually in the rule set for IPv6 to work at all.
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
} else {
// Neighbor advertisements on the other hand can absolutely be authenticated.
src.set((const void *)(frameData + 40 + 8),16,0);
}
} else {
// Other IPv6 packets can be handled normally
src.set((const void *)(frameData + 8),16,0);
}
} else if ((etherType == ZT_ETHERTYPE_ARP)&&(frameLen >= 28)) {
src.set((const void *)(frameData + 14),4,0);
}
if (inbound) {
if (membership) {
if ((src)&&(membership->peerOwnsAddress<InetAddress>(nconf,src)))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
if (membership->peerOwnsAddress<MAC>(nconf,macSource))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
}
} else {
for(unsigned int i=0;i<nconf.certificateOfOwnershipCount;++i) {
if ((src)&&(nconf.certificatesOfOwnership[i].owns(src)))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
if (nconf.certificatesOfOwnership[i].owns(macSource))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
}
}
}
cf |= ownershipVerificationMask;
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)&&(frameData[9] == 0x06)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
cf |= (uint64_t)frameData[headerLen + 13];
cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0fU)) << 8U);
} else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) {
if ((proto == 0x06)&&(frameLen > (pos + 14))) {
cf |= (uint64_t)frameData[pos + 13];
cf |= (((uint64_t)(frameData[pos + 12] & 0x0fU)) << 8U);
}
}
}
thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0);
} break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0])&&(frameLen <= (unsigned int)rules[rn].v.frameSize[1]));
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
thisRuleMatches = (uint8_t)((uint32_t)(Utils::random() & 0xffffffffULL) <= rules[rn].v.randomProbability);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: {
const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate());
if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) {
const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0);
if (remoteTag) {
const uint32_t ltv = localTag->value();
const uint32_t rtv = remoteTag->value();
if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) {
const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv);
thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) {
thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) {
thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) {
thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) {
thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value)&&(rtv == rules[rn].v.tag.value));
} else { // sanity check, can't really happen
thisRuleMatches = 0;
}
} else {
if ((inbound)&&(!superAccept)) {
thisRuleMatches = 0;
} else {
// Outbound side is not strict since if we have to match both tags and
// we are sending a first packet to a recipient, we probably do not know
// about their tags yet. They will filter on inbound and we will filter
// once we get their tag. If we are a tee/redirect target we are also
// not strict since we likely do not have these tags.
thisRuleMatches = 1;
}
}
} else {
thisRuleMatches = 0;
}
} break;
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: {
if (superAccept) {
thisRuleMatches = 1;
} else if ( ((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER)&&(inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER)&&(!inbound)) ) {
const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0);
if (remoteTag) {
thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value);
} else {
if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) {
// If we are checking the receiver and this is an outbound packet, we
// can't be strict since we may not yet know the receiver's tag.
thisRuleMatches = 1;
} else {
thisRuleMatches = 0;
}
}
} else { // sender and outbound or receiver and inbound
const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate());
if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) {
thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value);
} else {
thisRuleMatches = 0;
}
}
} break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: {
uint64_t integer = 0;
const unsigned int bits = (rules[rn].v.intRange.format & 63U) + 1;
const unsigned int bytes = ((bits + 8 - 1) / 8); // integer ceiling of division by 8
if ((rules[rn].v.intRange.format & 0x80U) == 0) {
// Big-endian
unsigned int idx = rules[rn].v.intRange.idx + (8 - bytes);
const unsigned int eof = idx + bytes;
if (eof <= frameLen) {
while (idx < eof) {
integer <<= 8U;
integer |= frameData[idx++];
}
}
integer &= 0xffffffffffffffffULL >> (64 - bits);
} else {
// Little-endian
unsigned int idx = rules[rn].v.intRange.idx;
const unsigned int eof = idx + bytes;
if (eof <= frameLen) {
while (idx < eof) {
integer >>= 8U;
integer |= ((uint64_t)frameData[idx++]) << 56U;
}
}
integer >>= (64 - bits);
}
thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start)&&(integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end)));
} break;
// The result of an unsupported MATCH is configurable at the network
// level via a flag.
default:
thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0);
break;
}
rrl.log(rn,thisRuleMatches,thisSetMatches);
if ((rules[rn].t & 0x40U))
thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U));
else thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U));
}
return DOZTFILTER_NO_MATCH;
}
} // anonymous namespace
const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL),0);
Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const Fingerprint &controllerFingerprint,void *uptr,const NetworkConfig *nconf) :
RR(renv),
m_uPtr(uptr),
m_id(nwid),
m_mac(renv->identity.address(), nwid),
m_portInitialized(false),
m_destroyed(false),
m_lastConfigUpdate(0),
_netconfFailure(NETCONF_FAILURE_NONE)
{
if (controllerFingerprint)
m_controllerFingerprint = controllerFingerprint;
if (nconf) {
this->setConfiguration(tPtr,*nconf,false);
m_lastConfigUpdate = 0; // still want to re-request since it's likely outdated
} else {
uint64_t tmp[2];
tmp[0] = nwid; tmp[1] = 0;
bool got = false;
try {
Dictionary dict;
Vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp));
if (nconfData.size() > 2) {
nconfData.push_back(0);
if (dict.decode(nconfData.data(),(unsigned int)nconfData.size())) {
try {
ScopedPtr<NetworkConfig> nconf2(new NetworkConfig());
if (nconf2->fromDictionary(dict)) {
this->setConfiguration(tPtr,*nconf2,false);
m_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated
got = true;
}
} catch (...) {}
}
}
} catch ( ... ) {}
if (!got)
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,"\n",1);
}
if (!m_portInitialized) {
ZT_VirtualNetworkConfig ctmp;
m_externalConfig(&ctmp);
RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
m_portInitialized = true;
}
}
Network::~Network()
{
m_memberships_l.lock();
m_config_l.lock();
m_config_l.unlock();
m_memberships_l.unlock();
ZT_VirtualNetworkConfig ctmp;
m_externalConfig(&ctmp);
if (m_destroyed) {
// This is done in Node::leave() so we can pass tPtr properly
//RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
} else {
RR->node->configureVirtualNetworkPort(nullptr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN, &ctmp);
}
}
bool Network::filterOutgoingPacket(
void *tPtr,
const bool noTee,
const Address &ztSource,
const Address &ztDest,
const MAC &macSource,
const MAC &macDest,
const uint8_t *frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId,
uint8_t &qosBucket)
{
Trace::RuleResultLog rrl,crrl;
Address ztFinalDest(ztDest);
int localCapabilityIndex = -1;
int accept = 0;
Address cc;
unsigned int ccLength = 0;
bool ccWatch = false;
Mutex::Lock l1(m_memberships_l);
Mutex::Lock l2(m_config_l);
Membership *const membership = (ztDest) ? m_memberships.get(ztDest) : nullptr;
switch(_doZtFilter(RR, rrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {
case DOZTFILTER_NO_MATCH: {
for(unsigned int c=0;c < m_config.capabilityCount;++c) {
ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match
Address cc2;
unsigned int ccLength2 = 0;
bool ccWatch2 = false;
switch (_doZtFilter(RR, crrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.capabilities[c].rules(), m_config.capabilities[c].ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
case DOZTFILTER_NO_MATCH:
case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
break;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side in capabilities
localCapabilityIndex = (int)c;
accept = 1;
if ((!noTee)&&(cc2)) {
// TODO
/*
Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,ccLength2);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
}
break;
}
if (accept)
break;
}
} break;
case DOZTFILTER_DROP:
RR->t->networkFilter(tPtr, 0xadea5a2a, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, 0);
return false;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1;
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2;
break;
}
if (accept != 0) {
if ((!noTee)&&(cc)) {
// TODO
/*
Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch ? 0x16 : 0x02));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,ccLength);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
}
if ((ztDest != ztFinalDest)&&(ztFinalDest)) {
// TODO
/*
Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)0x04);
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,frameLen);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
// DROP locally since we redirected
accept = 0;
}
}
if (localCapabilityIndex >= 0) {
const Capability &cap = m_config.capabilities[localCapabilityIndex];
RR->t->networkFilter(tPtr, 0x56ff1a93, m_id, rrl.l, crrl.l, cap.id(), cap.timestamp(), ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept);
} else {
RR->t->networkFilter(tPtr, 0x112fbbab, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept);
}
return (accept != 0);
}
int Network::filterIncomingPacket(
void *tPtr,
const SharedPtr<Peer> &sourcePeer,
const Address &ztDest,
const MAC &macSource,
const MAC &macDest,
const uint8_t *frameData,
const unsigned int frameLen,
const unsigned int etherType,
const unsigned int vlanId)
{
Address ztFinalDest(ztDest);
Trace::RuleResultLog rrl,crrl;
int accept = 0;
Address cc;
unsigned int ccLength = 0;
bool ccWatch = false;
const Capability *c = nullptr;
uint8_t qosBucket = 255; // For incoming packets this is a dummy value
Mutex::Lock l1(m_memberships_l);
Mutex::Lock l2(m_config_l);
Membership &membership = m_memberships[sourcePeer->address()];
switch (_doZtFilter(RR, rrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {
case DOZTFILTER_NO_MATCH: {
Membership::CapabilityIterator mci(membership, m_config);
while ((c = mci.next())) {
ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match
Address cc2;
unsigned int ccLength2 = 0;
bool ccWatch2 = false;
switch(_doZtFilter(RR, crrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
case DOZTFILTER_NO_MATCH:
case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
break;
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1; // ACCEPT
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2; // super-ACCEPT
break;
}
if (accept) {
if (cc2) {
// TODO
/*
Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,ccLength2);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
}
break;
}
}
} break;
case DOZTFILTER_DROP:
//if (_config.remoteTraceTarget)
// RR->t->networkFilter(tPtr,*this,rrl,(Trace::RuleResultLog *)0,(Capability *)0,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0);
return 0; // DROP
case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
case DOZTFILTER_ACCEPT:
accept = 1; // ACCEPT
break;
case DOZTFILTER_SUPER_ACCEPT:
accept = 2; // super-ACCEPT
break;
}
if (accept) {
if (cc) {
// TODO
/*
Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)(ccWatch ? 0x1c : 0x08));
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,ccLength);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
}
if ((ztDest != ztFinalDest)&&(ztFinalDest)) {
// TODO
/*
Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
outp.append(_id);
outp.append((uint8_t)0x0a);
macDest.appendTo(outp);
macSource.appendTo(outp);
outp.append((uint16_t)etherType);
outp.append(frameData,frameLen);
outp.compress();
RR->sw->send(tPtr,outp,true);
*/
//if (_config.remoteTraceTarget)
// RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0);
return 0; // DROP locally, since we redirected
}
}
//if (_config.remoteTraceTarget)
// RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,accept);
return accept;
}
void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg)
{
Mutex::Lock l(m_myMulticastGroups_l);
if (!std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) {
m_myMulticastGroups.insert(std::upper_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg), mg);
Mutex::Lock l2(m_memberships_l);
m_announceMulticastGroups(tPtr, true);
}
}
void Network::multicastUnsubscribe(const MulticastGroup &mg)
{
Mutex::Lock l(m_myMulticastGroups_l);
Vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
if ((i != m_myMulticastGroups.end()) && (*i == mg) )
m_myMulticastGroups.erase(i);
}
uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr<Peer> &source,const Buf &chunk,int ptr,int size)
{
// If the controller's full fingerprint is known or was explicitly specified on join(),
// require that the controller's identity match. Otherwise learn it.
if (m_controllerFingerprint) {
if (source->identity().fingerprint() != m_controllerFingerprint)
return 0;
} else {
m_controllerFingerprint = source->identity().fingerprint();
}
return 0;
#if 0
if (_destroyed)
return 0;
const unsigned int chunkPayloadStart = ptr;
ptr += 8; // skip network ID, which is already obviously known
const unsigned int chunkLen = chunk.rI16(ptr);
const uint8_t *chunkData = chunk.rBnc(ptr,chunkLen);
if (Buf<>::readOverflow(ptr,size))
return 0;
Mutex::Lock l1(_config_l);
_IncomingConfigChunk *c = nullptr;
uint64_t configUpdateId;
int totalLength = 0,chunkIndex = 0;
if (ptr < size) {
// If there is more data after the chunk / dictionary, it means this is a new controller
// that sends signed chunks. We still support really old controllers, but probably not forever.
const bool fastPropagate = ((chunk.rI8(ptr) & Protocol::NETWORK_CONFIG_FLAG_FAST_PROPAGATE) != 0);
configUpdateId = chunk.rI64(ptr);
totalLength = chunk.rI32(ptr);
chunkIndex = chunk.rI32(ptr);
++ptr; // skip unused signature type field
const unsigned int signatureSize = chunk.rI16(ptr);
const uint8_t *signature = chunk.rBnc(ptr,signatureSize);
if ((Buf<>::readOverflow(ptr,size))||((chunkIndex + chunkLen) > totalLength)||(totalLength >= ZT_MAX_NETWORK_CONFIG_BYTES)||(signatureSize > ZT_SIGNATURE_BUFFER_SIZE)||(!signature))
return 0;
const unsigned int chunkPayloadSize = (unsigned int)ptr - chunkPayloadStart;
// Find existing or new slot for this update and its chunk(s).
for(int i=0;i<ZT_NETWORK_MAX_INCOMING_UPDATES;++i) {
if (_incomingConfigChunks[i].updateId == configUpdateId) {
c = &(_incomingConfigChunks[i]);
if (c->chunks.find(chunkIndex) != c->chunks.end())
return 0; // we already have this chunk!
break;
} else if ((!c)||(_incomingConfigChunks[i].touchCtr < c->touchCtr)) {
c = &(_incomingConfigChunks[i]);
}
}
if (!c) // sanity check; should not be possible
return 0;
// Verify this chunk's signature
const SharedPtr<Peer> controllerPeer(RR->topology->get(tPtr,controller()));
if ((!controllerPeer)||(!controllerPeer->identity().verify(chunk.data.bytes + chunkPayloadStart,chunkPayloadSize,signature,signatureSize)))
return 0;
// New properly verified chunks can be flooded "virally" through the network via an aggressive
// exponential rumor mill algorithm.
if (fastPropagate) {
Mutex::Lock l2(_memberships_l);
Address *a = nullptr;
Membership *m = nullptr;
Hashtable<Address,Membership>::Iterator i(_memberships);
while (i.next(a,m)) {
if ((*a != source->address())&&(*a != controller())) {
ZT_GET_NEW_BUF(outp,Protocol::Header);
outp->data.fields.packetId = Protocol::getPacketId();
a->copyTo(outp->data.fields.destination);
RR->identity.address().copyTo(outp->data.fields.source);
outp->data.fields.flags = 0;
outp->data.fields.verb = Protocol::VERB_NETWORK_CONFIG;
int outl = sizeof(Protocol::Header);
outp->wB(outl,chunk.data.bytes + chunkPayloadStart,chunkPayloadSize);
if (Buf<>::writeOverflow(outl)) // sanity check... it fit before!
break;
RR->sw->send(tPtr,outp,true);
}
}
}
} else if ((!source)||(source->address() != this->controller())) {
// Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers that don't sign chunks and don't
// support multiple chunks. Since old controllers don't sign chunks we only accept the message if it comes
// directly from the controller.
configUpdateId = packetId;
totalLength = (int)chunkLen;
if (totalLength > ZT_MAX_NETWORK_CONFIG_BYTES)
return 0;
for(int i=0;i<ZT_NETWORK_MAX_INCOMING_UPDATES;++i) {
if ((!c)||(_incomingConfigChunks[i].touchCtr < c->touchCtr))
c = &(_incomingConfigChunks[i]);
}
} else {
// Not signed, not from controller -> reject.
return 0;
}
try {
++c->touchCtr;
if (c->updateId != configUpdateId) {
c->updateId = configUpdateId;
c->chunks.clear();
}
c->chunks[chunkIndex].assign(chunkData,chunkData + chunkLen);
int haveLength = 0;
for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
haveLength += (int)ch->second.size();
if (haveLength > ZT_MAX_NETWORK_CONFIG_BYTES) {
c->touchCtr = 0;
c->updateId = 0;
c->chunks.clear();
return 0;
}
if (haveLength == totalLength) {
Vector<uint8_t> assembledConfig;
for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
assembledConfig.insert(assembledConfig.end(),ch->second.begin(),ch->second.end());
Dictionary dict;
if (dict.decode(assembledConfig.data(),(unsigned int)assembledConfig.size())) {
ScopedPtr<NetworkConfig> nc(new NetworkConfig());
if (nc->fromDictionary(dict)) {
this->setConfiguration(tPtr,*nc,true);
return configUpdateId;
}
}
}
} catch (...) {}
return 0;
#endif
}
int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToDisk)
{
if (m_destroyed)
return 0;
// _lock is NOT locked when this is called
try {
if ((nconf.issuedTo != RR->identity.address())||(nconf.networkId != m_id))
return 0; // invalid config that is not for us or not for this network
if ((!Utils::allZero(nconf.issuedToFingerprintHash,ZT_FINGERPRINT_HASH_SIZE)) && (memcmp(nconf.issuedToFingerprintHash,RR->identity.fingerprint().hash,ZT_FINGERPRINT_HASH_SIZE) != 0))
return 0; // full identity hash is present and does not match
if (m_config == nconf)
return 1; // OK config, but duplicate of what we already have
ZT_VirtualNetworkConfig ctmp;
bool oldPortInitialized;
{ // do things that require lock here, but unlock before calling callbacks
Mutex::Lock l1(m_config_l);
m_config = nconf;
m_lastConfigUpdate = RR->node->now();
_netconfFailure = NETCONF_FAILURE_NONE;
oldPortInitialized = m_portInitialized;
m_portInitialized = true;
m_externalConfig(&ctmp);
}
RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, (oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
if (saveToDisk) {
try {
Dictionary d;
if (nconf.toDictionary(d)) {
uint64_t tmp[2];
tmp[0] = m_id; tmp[1] = 0;
Vector<uint8_t> d2;
d.encode(d2);
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,d2.data(),(unsigned int)d2.size());
}
} catch ( ... ) {}
}
return 2; // OK and configuration has changed
} catch ( ... ) {} // ignore invalid configs
return 0;
}
bool Network::gate(void *tPtr,const SharedPtr<Peer> &peer) noexcept
{
Mutex::Lock lc(m_config_l);
if (!m_config)
return false;
if (m_config.isPublic())
return true;
try {
Mutex::Lock l(m_memberships_l);
Membership *m = m_memberships.get(peer->address());
if (m) {
// SECURITY: this method in CertificateOfMembership does a full fingerprint check as well as
// checking certificate agreement. See Membership.hpp.
return m->certificateOfMembershipAgress(m_config.com, peer->identity());
} else {
m = &(m_memberships[peer->address()]);
return false;
}
} catch ( ... ) {}
return false;
}
void Network::doPeriodicTasks(void *tPtr,const int64_t now)
{
if (m_destroyed)
return;
if ((now - m_lastConfigUpdate) >= ZT_NETWORK_AUTOCONF_DELAY)
m_requestConfiguration(tPtr);
{
Mutex::Lock l1(m_memberships_l);
for(Map<Address,Membership>::iterator i(m_memberships.begin());i != m_memberships.end();++i)
i->second.clean(now, m_config);
{
Mutex::Lock l2(m_myMulticastGroups_l);
// TODO
/*
Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe);
MulticastGroup *mg = (MulticastGroup *)0;
uint64_t *ts = (uint64_t *)0;
while (i.next(mg,ts)) {
if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2))
_multicastGroupsBehindMe.erase(*mg);
}
_announceMulticastGroups(tPtr,false);
*/
}
}
}
void Network::learnBridgeRoute(const MAC &mac,const Address &addr)
{
Mutex::Lock _l(m_remoteBridgeRoutes_l);
m_remoteBridgeRoutes[mac] = addr;
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
while (m_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
Map< Address,unsigned long > counts;
Address maxAddr;
unsigned long maxCount = 0;
// Find the address responsible for the most entries
for(Map<MAC,Address>::iterator i(m_remoteBridgeRoutes.begin());i != m_remoteBridgeRoutes.end();++i) {
const unsigned long c = ++counts[i->second];
if (c > maxCount) {
maxCount = c;
maxAddr = i->second;
}
}
// Kill this address from our table, since it's most likely spamming us
for(Map<MAC,Address>::iterator i(m_remoteBridgeRoutes.begin());i != m_remoteBridgeRoutes.end();) {
if (i->second == maxAddr)
m_remoteBridgeRoutes.erase(i++);
else ++i;
}
}
}
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Identity &sourcePeerIdentity,const CertificateOfMembership &com)
{
if (com.networkId() != m_id)
return Membership::ADD_REJECTED;
Mutex::Lock _l(m_memberships_l);
return m_memberships[com.issuedTo().address].addCredential(RR, tPtr, sourcePeerIdentity, m_config, com);
}
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Identity &sourcePeerIdentity,const Capability &cap)
{
if (cap.networkId() != m_id)
return Membership::ADD_REJECTED;
Mutex::Lock _l(m_memberships_l);
return m_memberships[cap.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, cap);
}
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Identity &sourcePeerIdentity,const Tag &tag)
{
if (tag.networkId() != m_id)
return Membership::ADD_REJECTED;
Mutex::Lock _l(m_memberships_l);
return m_memberships[tag.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, tag);
}
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Identity &sourcePeerIdentity,const Revocation &rev)
{
if (rev.networkId() != m_id)
return Membership::ADD_REJECTED;
Mutex::Lock l1(m_memberships_l);
Membership &m = m_memberships[rev.target()];
const Membership::AddCredentialResult result = m.addCredential(RR, tPtr, sourcePeerIdentity, m_config, rev);
if ((result == Membership::ADD_ACCEPTED_NEW)&&(rev.fastPropagate())) {
// TODO
/*
Address *a = nullptr;
Membership *m = nullptr;
Hashtable<Address,Membership>::Iterator i(_memberships);
while (i.next(a,m)) {
if ((*a != sourcePeerIdentity.address())&&(*a != rev.signer())) {
Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00); // no COM
outp.append((uint16_t)0); // no capabilities
outp.append((uint16_t)0); // no tags
outp.append((uint16_t)1); // one revocation!
rev.serialize(outp);
outp.append((uint16_t)0); // no certificates of ownership
RR->sw->send(tPtr,outp,true);
}
}
*/
}
return result;
}
Membership::AddCredentialResult Network::addCredential(void *tPtr,const Identity &sourcePeerIdentity,const CertificateOfOwnership &coo)
{
if (coo.networkId() != m_id)
return Membership::ADD_REJECTED;
Mutex::Lock _l(m_memberships_l);
return m_memberships[coo.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, coo);
}
void Network::pushCredentials(void *tPtr,const SharedPtr<Peer> &to,const int64_t now)
{
const int64_t tout = std::min(m_config.credentialTimeMaxDelta, m_config.com.timestampMaxDelta());
Mutex::Lock _l(m_memberships_l);
Membership &m = m_memberships[to->address()];
if (((now - m.lastPushedCredentials()) + 5000) >= tout) {
m.pushCredentials(RR, tPtr, now, to, m_config);
}
}
void Network::destroy()
{
m_memberships_l.lock();
m_config_l.lock();
m_destroyed = true;
m_config_l.unlock();
m_memberships_l.unlock();
}
void Network::externalConfig(ZT_VirtualNetworkConfig *ec) const
{
Mutex::Lock _l(m_config_l);
m_externalConfig(ec);
}
void Network::m_requestConfiguration(void *tPtr)
{
if (m_destroyed)
return;
if ((m_id >> 56U) == 0xff) {
if ((m_id & 0xffffffU) == 0) {
const uint16_t startPortRange = (uint16_t)((m_id >> 40U) & 0xffff);
const uint16_t endPortRange = (uint16_t)((m_id >> 24U) & 0xffff);
if (endPortRange >= startPortRange) {
ScopedPtr<NetworkConfig> nconf(new NetworkConfig());
nconf->networkId = m_id;
nconf->timestamp = RR->node->now();
nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
nconf->revision = 1;
nconf->issuedTo = RR->identity.address();
nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
nconf->mtu = ZT_DEFAULT_MTU;
nconf->multicastLimit = 0;
nconf->staticIpCount = 1;
nconf->ruleCount = 14;
nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, RR->identity.address().toInt());
// Drop everything but IPv6
nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80U; // NOT
nconf->rules[0].v.etherType = 0x86dd; // IPv6
nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;
// Allow ICMPv6
nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6
nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Allow destination ports within range
nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
nconf->rules[4].v.ipProtocol = 0x11; // UDP
nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40U; // OR
nconf->rules[5].v.ipProtocol = 0x06; // TCP
nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE;
nconf->rules[6].v.port[0] = startPortRange;
nconf->rules[6].v.port[1] = endPortRange;
nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Allow non-SYN TCP packets to permit non-connection-initiating traffic
nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80U; // NOT
nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
// Also allow SYN+ACK which are replies to SYN
nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK;
nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;
nconf->type = ZT_NETWORK_TYPE_PUBLIC;
nconf->name[0] = 'a';
nconf->name[1] = 'd';
nconf->name[2] = 'h';
nconf->name[3] = 'o';
nconf->name[4] = 'c';
nconf->name[5] = '-';
Utils::hex((uint16_t)startPortRange,nconf->name + 6);
nconf->name[10] = '-';
Utils::hex((uint16_t)endPortRange,nconf->name + 11);
nconf->name[15] = (char)0;
this->setConfiguration(tPtr,*nconf,false);
} else {
this->setNotFound();
}
} else if ((m_id & 0xffU) == 0x01) {
// ffAAaaaaaaaaaa01 -- where AA is the IPv4 /8 to use and aaaaaaaaaa is the anchor node for multicast gather and replication
const uint64_t myAddress = RR->identity.address().toInt();
const uint64_t networkHub = (m_id >> 8U) & 0xffffffffffULL;
uint8_t ipv4[4];
ipv4[0] = (uint8_t)(m_id >> 48U);
ipv4[1] = (uint8_t)(myAddress >> 16U);
ipv4[2] = (uint8_t)(myAddress >> 8U);
ipv4[3] = (uint8_t)myAddress;
char v4ascii[24];
Utils::decimal(ipv4[0],v4ascii);
ScopedPtr<NetworkConfig> nconf(new NetworkConfig());
nconf->networkId = m_id;
nconf->timestamp = RR->node->now();
nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
nconf->revision = 1;
nconf->issuedTo = RR->identity.address();
nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
nconf->mtu = ZT_DEFAULT_MTU;
nconf->multicastLimit = 1024;
nconf->specialistCount = (networkHub == 0) ? 0 : 1;
nconf->staticIpCount = 2;
nconf->ruleCount = 1;
if (networkHub != 0)
nconf->specialists[0] = networkHub;
nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, myAddress);
nconf->staticIps[1].set(ipv4,4,8);
nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
nconf->type = ZT_NETWORK_TYPE_PUBLIC;
nconf->name[0] = 'a';
nconf->name[1] = 'd';
nconf->name[2] = 'h';
nconf->name[3] = 'o';
nconf->name[4] = 'c';
nconf->name[5] = '-';
unsigned long nn = 6;
while ((nconf->name[nn] = v4ascii[nn - 6])) ++nn;
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn++] = '.';
nconf->name[nn++] = '0';
nconf->name[nn] = (char)0;
this->setConfiguration(tPtr,*nconf,false);
}
return;
}
const Address ctrl(controller());
Dictionary rmd;
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR,(uint64_t)1); // 1 == ZeroTier, no other vendors at the moment
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_VERSION_MAJOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_VERSION_MINOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_VERSION_REVISION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES,(uint64_t)ZT_MAX_NETWORK_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES,(uint64_t)ZT_MAX_NETWORK_CAPABILITIES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES,(uint64_t)ZT_MAX_CAPABILITY_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS,(uint64_t)ZT_MAX_NETWORK_TAGS);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS,(uint64_t)0);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV,(uint64_t)ZT_RULES_ENGINE_REVISION);
RR->t->networkConfigRequestSent(tPtr, 0x335bb1a2, m_id);
if (ctrl == RR->identity.address()) {
if (RR->localNetworkController) {
RR->localNetworkController->request(m_id, InetAddress(), 0xffffffffffffffffULL, RR->identity, rmd);
} else {
this->setNotFound();
}
return;
}
// TODO
/*
Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append((uint64_t)_id);
const unsigned int rmdSize = rmd->sizeBytes();
outp.append((uint16_t)rmdSize);
outp.append((const void *)rmd->data(),rmdSize);
if (_config) {
outp.append((uint64_t)_config.revision);
outp.append((uint64_t)_config.timestamp);
} else {
outp.append((unsigned char)0,16);
}
outp.compress();
RR->node->expectReplyTo(outp.packetId());
RR->sw->send(tPtr,outp,true);
*/
}
ZT_VirtualNetworkStatus Network::m_status() const
{
switch(_netconfFailure) {
case NETCONF_FAILURE_ACCESS_DENIED:
return ZT_NETWORK_STATUS_ACCESS_DENIED;
case NETCONF_FAILURE_NOT_FOUND:
return ZT_NETWORK_STATUS_NOT_FOUND;
case NETCONF_FAILURE_NONE:
return ((m_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION);
default:
return ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION;
}
}
void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
{
// assumes _config_l is locked
ec->nwid = m_id;
ec->mac = m_mac.toInt();
if (m_config)
Utils::scopy(ec->name, sizeof(ec->name), m_config.name);
else ec->name[0] = (char)0;
ec->status = m_status();
ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU;
Vector<Address> ab;
for(unsigned int i=0;i < m_config.specialistCount;++i) {
if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
ab.push_back(Address(m_config.specialists[i]));
}
ec->bridge = (std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end()) ? 1 : 0;
ec->broadcastEnabled = (m_config) ? (m_config.enableBroadcast() ? 1 : 0) : 0;
ec->netconfRevision = (m_config) ? (unsigned long)m_config.revision : 0;
ec->assignedAddressCount = 0;
for(unsigned int i=0;i<ZT_MAX_ZT_ASSIGNED_ADDRESSES;++i) {
if (i < m_config.staticIpCount) {
Utils::copy<sizeof(struct sockaddr_storage)>(&(ec->assignedAddresses[i]),&(m_config.staticIps[i]));
++ec->assignedAddressCount;
} else {
Utils::zero<sizeof(struct sockaddr_storage)>(&(ec->assignedAddresses[i]));
}
}
ec->routeCount = 0;
for(unsigned int i=0;i<ZT_MAX_NETWORK_ROUTES;++i) {
if (i < m_config.routeCount) {
Utils::copy<sizeof(ZT_VirtualNetworkRoute)>(&(ec->routes[i]),&(m_config.routes[i]));
++ec->routeCount;
} else {
Utils::zero<sizeof(ZT_VirtualNetworkRoute)>(&(ec->routes[i]));
}
}
}
void Network::m_announceMulticastGroups(void *tPtr, bool force)
{
// Assumes _myMulticastGroups_l and _memberships_l are locked
const Vector<MulticastGroup> groups(m_allMulticastGroups());
m_announceMulticastGroupsTo(tPtr, controller(), groups);
// TODO
/*
Address *a = nullptr;
Membership *m = nullptr;
Hashtable<Address,Membership>::Iterator i(_memberships);
while (i.next(a,m)) {
bool announce = m->multicastLikeGate(now); // force this to be called even if 'force' is true since it updates last push time
if ((!announce)&&(force))
announce = true;
if ((announce)&&(m->isAllowedOnNetwork(_config)))
_announceMulticastGroupsTo(tPtr,*a,groups);
}
*/
}
void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector<MulticastGroup> &allMulticastGroups)
{
#if 0
// Assumes _myMulticastGroups_l and _memberships_l are locked
ScopedPtr<Packet> outp(new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE));
for(Vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
outp->compress();
RR->sw->send(tPtr,*outp,true);
outp->reset(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
}
// network ID, MAC, ADI
outp->append((uint64_t)_id);
mg->mac().appendTo(*outp);
outp->append((uint32_t)mg->adi());
}
if (outp->size() > ZT_PROTO_MIN_PACKET_LENGTH) {
outp->compress();
RR->sw->send(tPtr,*outp,true);
}
#endif
}
Vector<MulticastGroup> Network::m_allMulticastGroups() const
{
// Assumes _myMulticastGroups_l is locked
Vector<MulticastGroup> mgs;
mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1);
mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end());
for(Map<MulticastGroup,int64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i)
mgs.push_back(i->first);
if ((m_config) && (m_config.enableBroadcast()))
mgs.push_back(Network::BROADCAST);
std::sort(mgs.begin(),mgs.end());
mgs.erase(std::unique(mgs.begin(),mgs.end()),mgs.end());
return mgs;
}
} // namespace ZeroTier