ZeroTierOne/core/Peer.cpp
2020-06-08 11:47:28 -07:00

739 lines
23 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Trace.hpp"
#include "Peer.hpp"
#include "Topology.hpp"
#include "SelfAwareness.hpp"
#include "InetAddress.hpp"
#include "Protocol.hpp"
#include "Endpoint.hpp"
#include "Expect.hpp"
namespace ZeroTier {
Peer::Peer(const RuntimeEnvironment *renv) :
RR(renv),
m_ephemeralPairTimestamp(0),
m_lastReceive(0),
m_lastSend(0),
m_lastSentHello(),
m_lastWhoisRequestReceived(0),
m_lastEchoRequestReceived(0),
m_lastPrioritizedPaths(0),
m_lastProbeReceived(0),
m_alivePathCount(0),
m_tryQueue(),
m_vProto(0),
m_vMajor(0),
m_vMinor(0),
m_vRevision(0)
{
}
Peer::~Peer()
{
Utils::burn(m_helloMacKey, sizeof(m_helloMacKey));
}
bool Peer::init(const Identity &peerIdentity)
{
RWMutex::Lock l(m_lock);
if (m_id) // already initialized sanity check
return false;
m_id = peerIdentity;
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(peerIdentity, k))
return false;
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
m_deriveSecondaryIdentityKeys();
return true;
}
void Peer::received(
void *tPtr,
const SharedPtr< Path > &path,
const unsigned int hops,
const uint64_t packetId,
const unsigned int payloadLength,
const Protocol::Verb verb,
const Protocol::Verb inReVerb)
{
const int64_t now = RR->node->now();
m_lastReceive = now;
m_inMeter.log(now, payloadLength);
if (hops == 0) {
RWMutex::RMaybeWLock l(m_lock);
// If this matches an existing path, skip path learning stuff. For the small number
// of paths a peer will have linear scan is the fastest way to do lookup.
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if (m_paths[i] == path)
return;
}
// If we made it here, we don't already know this path.
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, path->localSocket(), path->address())) {
// SECURITY: note that if we've made it here we expected this OK, see Expect.hpp.
// There is replay protection in effect for OK responses.
if (verb == Protocol::VERB_OK) {
// If we're learning a new path convert the lock to an exclusive write lock.
l.writing();
// If the path list is full, replace the least recently active path. Otherwise append new path.
unsigned int newPathIdx = 0;
if (m_alivePathCount == ZT_MAX_PEER_NETWORK_PATHS) {
int64_t lastReceiveTimeMax = 0;
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if ((m_paths[i]->address().family() == path->address().family()) &&
(m_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated
(m_paths[i]->address().ipsEqual2(path->address()))) {
// Replace older path if everything is the same except the port number, since NAT/firewall reboots
// and other wacky stuff can change port number assignments.
m_paths[i] = path;
return;
} else if (m_paths[i]->lastIn() >= lastReceiveTimeMax) {
lastReceiveTimeMax = m_paths[i]->lastIn();
newPathIdx = i;
}
}
} else {
newPathIdx = m_alivePathCount++;
}
InetAddress old;
if (m_paths[newPathIdx])
old = m_paths[newPathIdx]->address();
m_paths[newPathIdx] = path;
// Re-prioritize paths to include the new one.
m_prioritizePaths(now);
// Add or update entry in the endpoint cache. If this endpoint
// is already present, its timesSeen count is incremented. Otherwise
// it replaces the lowest ranked entry.
std::sort(m_endpointCache, m_endpointCache + ZT_PEER_ENDPOINT_CACHE_SIZE);
Endpoint thisEndpoint(path->address());
for (unsigned int i = 0;; ++i) {
if (i == (ZT_PEER_ENDPOINT_CACHE_SIZE - 1)) {
m_endpointCache[i].target = thisEndpoint;
m_endpointCache[i].lastSeen = now;
break;
} else if (m_endpointCache[i].target == thisEndpoint) {
m_endpointCache[i].lastSeen = now;
break;
}
}
RR->t->learnedNewPath(tPtr, 0x582fabdd, packetId, m_id, path->address(), old);
} else {
path->sent(now, hello(tPtr, path->localSocket(), path->address(), now));
RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t)verb, m_id);
}
}
}
}
void Peer::send(void *tPtr, int64_t now, const void *data, unsigned int len) noexcept
{
SharedPtr< Path > via(this->path(now));
if (via) {
via->send(RR, tPtr, data, len, now);
} else {
const SharedPtr< Peer > root(RR->topology->root());
if ((root) && (root.ptr() != this)) {
via = root->path(now);
if (via) {
via->send(RR, tPtr, data, len, now);
root->relayed(now, len);
} else {
return;
}
} else {
return;
}
}
sent(now, len);
}
unsigned int Peer::hello(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const int64_t now)
{
Buf outp;
const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(), m_id.address());
int ii = Protocol::newPacket(outp, packetId, m_id.address(), RR->identity.address(), Protocol::VERB_HELLO);
outp.wI8(ii, ZT_PROTO_VERSION);
outp.wI8(ii, ZEROTIER_VERSION_MAJOR);
outp.wI8(ii, ZEROTIER_VERSION_MINOR);
outp.wI16(ii, ZEROTIER_VERSION_REVISION);
outp.wI64(ii, (uint64_t)now);
outp.wO(ii, RR->identity);
outp.wO(ii, atAddress);
const int ivStart = ii;
outp.wR(ii, 12);
// LEGACY: the six reserved bytes after the IV exist for legacy compatibility with v1.x nodes.
// Once those are dead they'll become just reserved bytes for future use as flags etc.
outp.wI32(ii, 0); // reserved bytes
void *const legacyMoonCountStart = outp.unsafeData + ii;
outp.wI16(ii, 0);
const uint64_t legacySalsaIv = packetId & ZT_CONST_TO_BE_UINT64(0xfffffffffffffff8ULL);
Salsa20(m_identityKey->secret, &legacySalsaIv).crypt12(legacyMoonCountStart, legacyMoonCountStart, 2);
const int cryptSectionStart = ii;
FCV< uint8_t, 4096 > md;
Dictionary::append(md, ZT_PROTO_HELLO_NODE_META_INSTANCE_ID, RR->instanceId);
outp.wI16(ii, (uint16_t)md.size());
outp.wB(ii, md.data(), (unsigned int)md.size());
if (unlikely((ii + ZT_HMACSHA384_LEN) > ZT_BUF_SIZE)) // sanity check: should be impossible
return 0;
AES::CTR ctr(m_helloCipher);
void *const cryptSection = outp.unsafeData + ii;
ctr.init(outp.unsafeData + ivStart, 0, cryptSection);
ctr.crypt(cryptSection, ii - cryptSectionStart);
ctr.finish();
HMACSHA384(m_helloMacKey, outp.unsafeData, ii, outp.unsafeData + ii);
ii += ZT_HMACSHA384_LEN;
// LEGACY: we also need Poly1305 for v1.x peers.
uint8_t polyKey[ZT_POLY1305_KEY_SIZE], perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(m_identityKey->secret, perPacketKey, outp, ii);
Salsa20(perPacketKey, &packetId).crypt12(Utils::ZERO256, polyKey, sizeof(polyKey));
Poly1305 p1305(polyKey);
p1305.update(outp.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, ii - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START);
uint64_t polyMac[2];
p1305.finish(polyMac);
Utils::storeAsIsEndian< uint64_t >(outp.unsafeData + ZT_PROTO_PACKET_MAC_INDEX, polyMac[0]);
return (likely(RR->node->putPacket(tPtr, localSocket, atAddress, outp.unsafeData, ii))) ? ii : 0;
}
void Peer::pulse(void *const tPtr, const int64_t now, const bool isRoot)
{
RWMutex::Lock l(m_lock);
// Determine if we need a new ephemeral key pair and if a new HELLO needs
// to be sent. The latter happens every ZT_PEER_HELLO_INTERVAL or if a new
// ephemeral key pair is generated.
bool needHello = false;
if ((m_vProto >= 11) && (((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0]) && (m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))))) {
m_ephemeralPair.generate();
needHello = true;
} else if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) {
needHello = true;
}
// Prioritize paths and more importantly for here forget dead ones.
m_prioritizePaths(now);
if (m_tryQueue.empty()) {
if (m_alivePathCount == 0) {
// If there are no living paths and nothing in the try queue, try addresses
// from any locator we have on file or that are fetched via the external API
// callback (if one was supplied).
if (m_locator) {
for (Vector< Endpoint >::const_iterator ep(m_locator->endpoints().begin()); ep != m_locator->endpoints().end(); ++ep) {
if (ep->type == ZT_ENDPOINT_TYPE_IP_UDP) {
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, ep->ip())) {
int64_t &lt = m_lastTried[*ep];
if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) {
lt = now;
RR->t->tryingNewPath(tPtr, 0x84b22322, m_id, ep->ip(), InetAddress::NIL, 0, 0, Identity::NIL);
sent(now, m_sendProbe(tPtr, -1, ep->ip(), nullptr, 0, now));
}
}
}
}
}
for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) {
if ((m_endpointCache[i].lastSeen > 0) && (m_endpointCache[i].target.type == ZT_ENDPOINT_TYPE_IP_UDP)) {
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, m_endpointCache[i].target.ip())) {
int64_t &lt = m_lastTried[m_endpointCache[i].target];
if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) {
lt = now;
RR->t->tryingNewPath(tPtr, 0x84b22343, m_id, m_endpointCache[i].target.ip(), InetAddress::NIL, 0, 0, Identity::NIL);
sent(now, m_sendProbe(tPtr, -1, m_endpointCache[i].target.ip(), nullptr, 0, now));
}
}
}
}
InetAddress addr;
if (RR->node->externalPathLookup(tPtr, m_id, -1, addr)) {
if ((addr) && RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr)) {
int64_t &lt = m_lastTried[Endpoint(addr)];
if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) {
lt = now;
RR->t->tryingNewPath(tPtr, 0x84a10000, m_id, addr, InetAddress::NIL, 0, 0, Identity::NIL);
sent(now, m_sendProbe(tPtr, -1, addr, nullptr, 0, now));
}
}
}
}
} else {
// Attempt up to ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE queued addresses.
// Note that m_lastTried is checked when contact() is called and something
// is added to the try queue, not here.
unsigned int attempts = 0;
for (;;) {
p_TryQueueItem &qi = m_tryQueue.front();
if (qi.target.isInetAddr()) {
// Skip entry if it overlaps with any currently active IP.
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if (m_paths[i]->address().ipsEqual(qi.target.ip()))
goto discard_queue_item;
}
}
if (qi.target.type == ZT_ENDPOINT_TYPE_IP_UDP) {
++attempts;
if (qi.iteration < 0) {
// If iteration is less than zero, try to contact the original address.
// It may be set to a larger negative value to try multiple times such
// as e.g. -3 to try 3 times.
sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), nullptr, 0, now));
++qi.iteration;
goto requeue_item;
} else if (qi.target.ip().isV4() && (m_alivePathCount == 0)) {
// When iteration reaches zero the queue item is dropped unless it's
// IPv4 and we have no direct paths. In that case some heavier NAT-t
// strategies are attempted.
if (qi.target.ip().port() < 1024) {
// If the source port is privileged, we actually scan every possible
// privileged port in random order slowly over multiple iterations
// of pulse(). This is done in batches of ZT_NAT_T_PORT_SCAN_MAX.
uint16_t ports[ZT_NAT_T_PORT_SCAN_MAX];
unsigned int pn = 0;
while ((pn < ZT_NAT_T_PORT_SCAN_MAX) && (qi.iteration < 1023)) {
const uint16_t p = RR->randomPrivilegedPortOrder[qi.iteration++];
if ((unsigned int)p != qi.target.ip().port())
ports[pn++] = p;
}
if (pn > 0)
sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), ports, pn, now));
if (qi.iteration < 1023)
goto requeue_item;
} else {
// For un-privileged ports we'll try ZT_NAT_T_PORT_SCAN_MAX ports
// beyond the one we were sent to catch some sequentially assigning
// symmetric NATs.
InetAddress tmp(qi.target.ip());
unsigned int p = tmp.port() + 1 + (unsigned int)qi.iteration++;
if (p > 65535)
p -= 64512; // wrap back to 1024
tmp.setPort(p);
sent(now, m_sendProbe(tPtr, -1, tmp, nullptr, 0, now));
if (qi.iteration < ZT_NAT_T_PORT_SCAN_MAX)
goto requeue_item;
}
}
}
// Discard front item unless the code skips to requeue_item.
discard_queue_item:
m_tryQueue.pop_front();
if (attempts >= std::min((unsigned int)m_tryQueue.size(), (unsigned int)ZT_NAT_T_PORT_SCAN_MAX))
break;
else continue;
// If the code skips here the front item is instead moved to the back.
requeue_item:
if (m_tryQueue.size() > 1) // no point in doing this splice if there's only one item
m_tryQueue.splice(m_tryQueue.end(), m_tryQueue, m_tryQueue.begin());
if (attempts >= std::min((unsigned int)m_tryQueue.size(), (unsigned int)ZT_NAT_T_PORT_SCAN_MAX))
break;
else continue;
}
}
// Do keepalive on all currently active paths, sending HELLO to the first
// if needHello is true and sending small keepalives to others.
uint64_t randomJunk = Utils::random();
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if (needHello) {
needHello = false;
const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now);
m_paths[i]->sent(now, bytes);
sent(now, bytes);
m_lastSentHello = now;
} else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) {
m_paths[i]->send(RR, tPtr, reinterpret_cast<uint8_t *>(&randomJunk) + (i & 7U), 1, now);
sent(now, 1);
}
}
// Send a HELLO indirectly if we were not able to send one via any direct path.
if (needHello) {
const SharedPtr< Peer > root(RR->topology->root());
if (root) {
const SharedPtr< Path > via(root->path(now));
if (via) {
const unsigned int bytes = hello(tPtr, via->localSocket(), via->address(), now);
via->sent(now, bytes);
root->relayed(now, bytes);
sent(now, bytes);
m_lastSentHello = now;
}
}
}
// Clean m_lastTried
for (Map< Endpoint, int64_t >::iterator i(m_lastTried.begin()); i != m_lastTried.end();) {
if ((now - i->second) > (ZT_PATH_MIN_TRY_INTERVAL * 4))
m_lastTried.erase(i++);
else ++i;
}
}
void Peer::contact(void *tPtr, const int64_t now, const Endpoint &ep, int tries)
{
static uint8_t foo = 0;
RWMutex::Lock l(m_lock);
// See if there's already a path to this endpoint and if so ignore it.
if (ep.isInetAddr()) {
if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL)
m_prioritizePaths(now);
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if (m_paths[i]->address().ipsEqual(ep.ip()))
return;
}
}
// Check underlying path attempt rate limit.
int64_t &lt = m_lastTried[ep];
if ((now - lt) < ZT_PATH_MIN_TRY_INTERVAL)
return;
lt = now;
// For IPv4 addresses we send a tiny packet with a low TTL, which helps to
// traverse some NAT types. It has no effect otherwise.
if (ep.isInetAddr() && ep.ip().isV4()) {
++foo;
RR->node->putPacket(tPtr, -1, ep.ip(), &foo, 1, 2);
}
// Make sure address is not already in the try queue. If so just update it.
for (List< p_TryQueueItem >::iterator i(m_tryQueue.begin()); i != m_tryQueue.end(); ++i) {
if (i->target.isSameAddress(ep)) {
i->target = ep;
i->iteration = -tries;
return;
}
}
m_tryQueue.push_back(p_TryQueueItem(ep, -tries));
}
void Peer::resetWithinScope(void *tPtr, InetAddress::IpScope scope, int inetAddressFamily, int64_t now)
{
RWMutex::Lock l(m_lock);
unsigned int pc = 0;
for (unsigned int i = 0; i < m_alivePathCount; ++i) {
if ((m_paths[i]) && ((m_paths[i]->address().family() == inetAddressFamily) && (m_paths[i]->address().ipScope() == scope))) {
const unsigned int bytes = m_sendProbe(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), nullptr, 0, now);
m_paths[i]->sent(now, bytes);
sent(now, bytes);
} else if (pc != i) {
m_paths[pc++] = m_paths[i];
}
}
m_alivePathCount = pc;
while (pc < ZT_MAX_PEER_NETWORK_PATHS)
m_paths[pc++].zero();
}
bool Peer::directlyConnected(int64_t now)
{
if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) {
RWMutex::Lock l(m_lock);
m_prioritizePaths(now);
return m_alivePathCount > 0;
} else {
RWMutex::RLock l(m_lock);
return m_alivePathCount > 0;
}
}
void Peer::getAllPaths(Vector< SharedPtr< Path > > &paths)
{
RWMutex::RLock l(m_lock);
paths.clear();
paths.reserve(m_alivePathCount);
paths.assign(m_paths, m_paths + m_alivePathCount);
}
void Peer::save(void *tPtr) const
{
uint8_t buf[8 + ZT_PEER_MARSHAL_SIZE_MAX];
// Prefix each saved peer with the current timestamp.
Utils::storeBigEndian< uint64_t >(buf, (uint64_t)RR->node->now());
const int len = marshal(buf + 8);
if (len > 0) {
uint64_t id[2];
id[0] = m_id.address().toInt();
id[1] = 0;
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_PEER, id, buf, (unsigned int)len + 8);
}
}
int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept
{
RWMutex::RLock l(m_lock);
if (!m_identityKey)
return -1;
data[0] = 16; // serialized peer version
// Include our identity's address to detect if this changes and require
// recomputation of m_identityKey.
RR->identity.address().copyTo(data + 1);
// SECURITY: encryption in place is only to protect secrets if they are
// cached to local storage. It's not used over the wire. Dumb ECB is fine
// because secret keys are random and have no structure to reveal.
RR->localCacheSymmetric.encrypt(m_identityKey->secret, data + 1 + ZT_ADDRESS_LENGTH);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 16, data + 1 + ZT_ADDRESS_LENGTH + 16);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 32, data + 1 + ZT_ADDRESS_LENGTH + 32);
int p = 1 + ZT_ADDRESS_LENGTH + 48;
int s = m_id.marshal(data + p, false);
if (s < 0)
return -1;
p += s;
if (m_locator) {
data[p++] = 1;
s = m_locator->marshal(data + p);
if (s <= 0)
return s;
p += s;
} else {
data[p++] = 0;
}
unsigned int cachedEndpointCount = 0;
for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) {
if (m_endpointCache[i].lastSeen > 0)
++cachedEndpointCount;
}
Utils::storeBigEndian(data + p, (uint16_t)cachedEndpointCount);
p += 2;
for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) {
Utils::storeBigEndian(data + p, (uint64_t)m_endpointCache[i].lastSeen);
s = m_endpointCache[i].target.marshal(data + p);
if (s <= 0)
return -1;
p += s;
}
Utils::storeBigEndian(data + p, (uint16_t)m_vProto);
p += 2;
Utils::storeBigEndian(data + p, (uint16_t)m_vMajor);
p += 2;
Utils::storeBigEndian(data + p, (uint16_t)m_vMinor);
p += 2;
Utils::storeBigEndian(data + p, (uint16_t)m_vRevision);
p += 2;
data[p++] = 0;
data[p++] = 0;
return p;
}
int Peer::unmarshal(const uint8_t *restrict data, const int len) noexcept
{
RWMutex::Lock l(m_lock);
if ((len <= (1 + ZT_ADDRESS_LENGTH + 48)) || (data[0] != 16))
return -1;
m_identityKey.zero();
m_ephemeralKeys[0].zero();
m_ephemeralKeys[1].zero();
if (Address(data + 1) == RR->identity.address()) {
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
static_assert(ZT_SYMMETRIC_KEY_SIZE == 48, "marshal() and unmarshal() must be revisited if ZT_SYMMETRIC_KEY_SIZE is changed");
RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH, k);
RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH + 16, k + 16);
RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH + 32, k + 32);
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
}
int p = 1 + ZT_ADDRESS_LENGTH + 48;
int s = m_id.unmarshal(data + p, len - p);
if (s < 0)
return s;
p += s;
if (!m_identityKey) {
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(m_id, k))
return -1;
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
}
if (p >= len)
return -1;
if (data[p] == 0) {
++p;
m_locator.zero();
} else if (data[p] == 1) {
++p;
Locator *const loc = new Locator();
s = loc->unmarshal(data + p, len - p);
m_locator.set(loc);
if (s < 0)
return s;
p += s;
} else {
return -1;
}
const unsigned int cachedEndpointCount = Utils::loadBigEndian< uint16_t >(data + p);
p += 2;
for (unsigned int i = 0; i < cachedEndpointCount; ++i) {
if (i < ZT_PEER_ENDPOINT_CACHE_SIZE) {
if ((p + 8) >= len)
return -1;
m_endpointCache[i].lastSeen = (int64_t)Utils::loadBigEndian< uint64_t >(data + p);
p += 8;
s = m_endpointCache[i].target.unmarshal(data + p, len - p);
if (s <= 0)
return -1;
p += s;
}
}
if ((p + 10) > len)
return -1;
m_vProto = Utils::loadBigEndian< uint16_t >(data + p);
p += 2;
m_vMajor = Utils::loadBigEndian< uint16_t >(data + p);
p += 2;
m_vMinor = Utils::loadBigEndian< uint16_t >(data + p);
p += 2;
m_vRevision = Utils::loadBigEndian< uint16_t >(data + p);
p += 2;
p += 2 + (int)Utils::loadBigEndian< uint16_t >(data + p);
m_deriveSecondaryIdentityKeys();
return (p > len) ? -1 : p;
}
struct _PathPriorityComparisonOperator
{
ZT_INLINE bool operator()(const SharedPtr< Path > &a, const SharedPtr< Path > &b) const noexcept
{
// Sort in descending order of most recent receive time.
return (a->lastIn() > b->lastIn());
}
};
void Peer::m_prioritizePaths(int64_t now)
{
// assumes _lock is locked for writing
m_lastPrioritizedPaths = now;
if (m_alivePathCount > 0) {
// Sort paths in descending order of priority.
std::sort(m_paths, m_paths + m_alivePathCount, _PathPriorityComparisonOperator());
// Let go of paths that have expired.
for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if ((!m_paths[i]) || (!m_paths[i]->alive(now))) {
m_alivePathCount = i;
for (; i < ZT_MAX_PEER_NETWORK_PATHS; ++i)
m_paths[i].zero();
break;
}
}
}
}
unsigned int Peer::m_sendProbe(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const uint16_t *ports, const unsigned int numPorts, int64_t now)
{
// Assumes m_lock is locked
const SharedPtr< SymmetricKey > k(m_key());
const uint64_t packetId = k->nextMessage(RR->identity.address(), m_id.address());
uint8_t p[ZT_PROTO_MIN_PACKET_LENGTH];
Utils::storeAsIsEndian< uint64_t >(p + ZT_PROTO_PACKET_ID_INDEX, packetId);
m_id.address().copyTo(p + ZT_PROTO_PACKET_DESTINATION_INDEX);
RR->identity.address().copyTo(p + ZT_PROTO_PACKET_SOURCE_INDEX);
p[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
p[ZT_PROTO_PACKET_VERB_INDEX] = Protocol::VERB_ECHO;
Protocol::armor(p, ZT_PROTO_MIN_PACKET_LENGTH, k, cipher());
RR->expect->sending(packetId, now);
if (numPorts > 0) {
InetAddress tmp(atAddress);
for (unsigned int i = 0; i < numPorts; ++i) {
tmp.setPort(ports[i]);
RR->node->putPacket(tPtr, -1, tmp, p, ZT_PROTO_MIN_PACKET_LENGTH);
}
return ZT_PROTO_MIN_PACKET_LENGTH * numPorts;
} else {
RR->node->putPacket(tPtr, -1, atAddress, p, ZT_PROTO_MIN_PACKET_LENGTH);
return ZT_PROTO_MIN_PACKET_LENGTH;
}
}
void Peer::m_deriveSecondaryIdentityKeys() noexcept
{
uint8_t hk[ZT_SYMMETRIC_KEY_SIZE];
KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT, 0, 0, hk);
m_helloCipher.init(hk);
Utils::burn(hk, sizeof(hk));
KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_PACKET_HMAC, 0, 0, m_helloMacKey);
}
} // namespace ZeroTier