ZeroTierOne/core/Utils.cpp
2020-06-08 11:47:28 -07:00

452 lines
11 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Utils.hpp"
#include "Mutex.hpp"
#include "AES.hpp"
#include "SHA512.hpp"
#ifdef __UNIX_LIKE__
#include <unistd.h>
#include <fcntl.h>
#include <sys/uio.h>
#endif
#include <time.h>
#ifdef __WINDOWS__
#include <wincrypt.h>
#endif
namespace ZeroTier {
namespace Utils {
#ifdef ZT_ARCH_X64
CPUIDRegisters::CPUIDRegisters() noexcept
{
uint32_t eax, ebx, ecx, edx;
#ifdef __WINDOWS__
int regs[4];
__cpuid(regs,1);
eax = (uint32_t)regs[0];
ebx = (uint32_t)regs[1];
ecx = (uint32_t)regs[2];
edx = (uint32_t)regs[3];
#else
__asm__ __volatile__ (
"cpuid"
: "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "a"(1), "c"(0)
);
#endif
rdrand = ((ecx & (1U << 30U)) != 0);
aes = (((ecx & (1U << 25U)) != 0) && ((ecx & (1U << 19U)) != 0) && ((ecx & (1U << 1U)) != 0));
avx = ((ecx & (1U << 25U)) != 0);
#ifdef __WINDOWS__
__cpuid(regs,7);
eax = (uint32_t)regs[0];
ebx = (uint32_t)regs[1];
ecx = (uint32_t)regs[2];
edx = (uint32_t)regs[3];
#else
__asm__ __volatile__ (
"cpuid"
: "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "a"(7), "c"(0)
);
#endif
vaes = aes && avx && ((ecx & (1U << 9U)) != 0);
vpclmulqdq = aes && avx && ((ecx & (1U << 10U)) != 0);
avx2 = avx && ((ebx & (1U << 5U)) != 0);
avx512f = avx && ((ebx & (1U << 16U)) != 0);
sha = ((ebx & (1U << 29U)) != 0);
fsrm = sha = ((edx & (1U << 4U)) != 0);
}
const CPUIDRegisters CPUID;
#endif
const uint64_t ZERO256[4] = {0, 0, 0, 0};
const char HEXCHARS[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
const uint64_t s_mapNonce = getSecureRandomU64();
bool secureEq(const void *a, const void *b, unsigned int len) noexcept
{
uint8_t diff = 0;
for (unsigned int i = 0; i < len; ++i)
diff |= ((reinterpret_cast<const uint8_t *>(a))[i] ^ (reinterpret_cast<const uint8_t *>(b))[i]);
return (diff == 0);
}
// Crazy hack to force memory to be securely zeroed in spite of the best efforts of optimizing compilers.
static void _Utils_doBurn(volatile uint8_t *ptr, unsigned int len)
{
for (unsigned int i = 0; i < len; ++i)
ptr[i] = 0;
}
static void (*volatile _Utils_doBurn_ptr)(volatile uint8_t *, unsigned int) = _Utils_doBurn;
void burn(void *ptr, unsigned int len)
{ (_Utils_doBurn_ptr)((volatile uint8_t *)ptr, len); }
static unsigned long _Utils_itoa(unsigned long n, char *s)
{
if (n == 0)
return 0;
unsigned long pos = _Utils_itoa(n / 10, s);
if (pos >= 22) // sanity check,should be impossible
pos = 22;
s[pos] = (char)('0' + (n % 10));
return pos + 1;
}
char *decimal(unsigned long n, char s[24]) noexcept
{
if (n == 0) {
s[0] = '0';
s[1] = (char)0;
return s;
}
s[_Utils_itoa(n, s)] = (char)0;
return s;
}
char *hex(uint64_t i, char buf[17]) noexcept
{
if (i) {
char *p = buf + 16;
*p = 0;
while (i) {
*(--p) = HEXCHARS[i & 0xfU];
i >>= 4;
}
return p;
} else {
buf[0] = '0';
buf[1] = 0;
return buf;
}
}
uint64_t unhex(const char *s) noexcept
{
uint64_t n = 0;
if (s) {
int k = 0;
while (k < 16) {
char hc = *(s++);
if (!hc) break;
uint8_t c = 0;
if ((hc >= 48) && (hc <= 57))
c = (uint8_t)hc - 48;
else if ((hc >= 97) && (hc <= 102))
c = (uint8_t)hc - 87;
else if ((hc >= 65) && (hc <= 70))
c = (uint8_t)hc - 55;
n <<= 4U;
n |= (uint64_t)c;
++k;
}
}
return n;
}
char *hex(const void *d, unsigned int l, char *s) noexcept
{
char *const save = s;
for (unsigned int i = 0; i < l; ++i) {
const unsigned int b = reinterpret_cast<const uint8_t *>(d)[i];
*(s++) = HEXCHARS[b >> 4U];
*(s++) = HEXCHARS[b & 0xfU];
}
*s = (char)0;
return save;
}
unsigned int unhex(const char *h, unsigned int hlen, void *buf, unsigned int buflen) noexcept
{
unsigned int l = 0;
const char *hend = h + hlen;
while (l < buflen) {
if (h == hend) break;
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) break;
uint8_t c = 0;
if ((hc >= 48) && (hc <= 57))
c = hc - 48;
else if ((hc >= 97) && (hc <= 102))
c = hc - 87;
else if ((hc >= 65) && (hc <= 70))
c = hc - 55;
if (h == hend) break;
hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) break;
c <<= 4U;
if ((hc >= 48) && (hc <= 57))
c |= hc - 48;
else if ((hc >= 97) && (hc <= 102))
c |= hc - 87;
else if ((hc >= 65) && (hc <= 70))
c |= hc - 55;
reinterpret_cast<uint8_t *>(buf)[l++] = c;
}
return l;
}
#define ZT_GETSECURERANDOM_STATE_SIZE 64
#define ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR 1048576
void getSecureRandom(void *const buf, unsigned int bytes) noexcept
{
static Mutex globalLock;
static bool initialized = false;
static uint64_t randomState[ZT_GETSECURERANDOM_STATE_SIZE];
static unsigned int randomByteCounter = ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR; // init on first run
static AES randomGen;
Mutex::Lock gl(globalLock);
// Re-initialize the generator every ITERATIONS_PER_GENERATOR bytes.
if (unlikely((randomByteCounter += bytes) >= ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR)) {
// On first run fill randomState with random bits from the system.
if (unlikely(!initialized)) {
initialized = true;
// Don't let randomState be swapped to disk (if supported by OS).
Utils::memoryLock(randomState, sizeof(randomState));
// Fill randomState with entropy from the system. Failure equals hard exit.
Utils::zero< sizeof(randomState) >(randomState);
#ifdef __WINDOWS__
HCRYPTPROV cryptProvider = NULL;
if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomState),(BYTE *)randomState)) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
CryptReleaseContext(cryptProvider,0);
#else
int devURandomFd = ::open("/dev/urandom", O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr, "FATAL: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
}
if ((long)::read(devURandomFd, randomState, sizeof(randomState)) != (long)sizeof(randomState)) {
::close(devURandomFd);
fprintf(stderr, "FATAL: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
close(devURandomFd);
#endif
// Mix in additional entropy from time, the address of 'buf', CPU RDRAND if present, etc.
randomState[0] += (uint64_t)time(nullptr);
randomState[1] += (uint64_t)((uintptr_t)buf);
#ifdef __UNIX_LIKE__
randomState[2] += (uint64_t)getpid();
randomState[3] += (uint64_t)getppid();
#endif
#ifdef ZT_ARCH_X64
if (CPUID.rdrand) {
uint64_t tmp = 0;
for (int k = 0; k < ZT_GETSECURERANDOM_STATE_SIZE; ++k) {
_rdrand64_step((unsigned long long *)&tmp);
randomState[k] ^= tmp;
}
}
#endif
}
// Initialize or re-initialize generator by hashing the full state,
// replacing the first 64 bytes with this hash, and then re-initializing
// AES with the first 32 bytes.
randomByteCounter = 0;
SHA512(randomState, randomState, sizeof(randomState));
randomGen.init(randomState);
}
// Generate random bytes using AES and bytes 32-48 of randomState as an in-place
// AES-CTR counter. Counter can be machine endian; we don't care about portability
// for a random generator.
uint64_t *const ctr = randomState + 4;
uint8_t *out = reinterpret_cast<uint8_t *>(buf);
while (bytes >= 16) {
++*ctr;
randomGen.encrypt(ctr, out);
out += 16;
bytes -= 16;
}
if (bytes > 0) {
uint8_t tmp[16];
++*ctr;
randomGen.encrypt(ctr, tmp);
for (unsigned int i = 0; i < bytes; ++i)
out[i] = tmp[i];
Utils::burn(tmp, sizeof(tmp)); // don't leave used cryptographic randomness lying around!
}
}
uint64_t getSecureRandomU64() noexcept
{
uint64_t tmp = 0;
getSecureRandom(&tmp, sizeof(tmp));
return tmp;
}
int b32e(const uint8_t *data, int length, char *result, int bufSize) noexcept
{
if (length < 0 || length > (1 << 28U)) {
result[0] = (char)0;
return -1;
}
int count = 0;
if (length > 0) {
int buffer = data[0];
int next = 1;
int bitsLeft = 8;
while (count < bufSize && (bitsLeft > 0 || next < length)) {
if (bitsLeft < 5) {
if (next < length) {
buffer <<= 8U;
buffer |= data[next++] & 0xffU;
bitsLeft += 8;
} else {
int pad = 5 - bitsLeft;
buffer <<= pad;
bitsLeft += pad;
}
}
int index = 0x1f & (buffer >> (unsigned int)(bitsLeft - 5));
bitsLeft -= 5;
result[count++] = "abcdefghijklmnopqrstuvwxyz234567"[index];
}
}
if (count < bufSize) {
result[count] = (char)0;
return count;
}
result[0] = (char)0;
return -1;
}
int b32d(const char *encoded, uint8_t *result, int bufSize) noexcept
{
int buffer = 0;
int bitsLeft = 0;
int count = 0;
for (const uint8_t *ptr = (const uint8_t *)encoded; count < bufSize && *ptr; ++ptr) {
uint8_t ch = *ptr;
if (ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n' || ch == '-' || ch == '.') {
continue;
}
buffer <<= 5;
if (ch == '0') {
ch = 'O';
} else if (ch == '1') {
ch = 'L';
} else if (ch == '8') {
ch = 'B';
}
if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')) {
ch = (ch & 0x1f) - 1;
} else if (ch >= '2' && ch <= '7') {
ch -= '2' - 26;
} else {
return -1;
}
buffer |= ch;
bitsLeft += 5;
if (bitsLeft >= 8) {
result[count++] = buffer >> (bitsLeft - 8);
bitsLeft -= 8;
}
}
if (count < bufSize)
result[count] = (uint8_t)0;
return count;
}
uint64_t random() noexcept
{
// https://en.wikipedia.org/wiki/Xorshift#xoshiro256**
static volatile uint64_t s_s0 = getSecureRandomU64();
static volatile uint64_t s_s1 = getSecureRandomU64();
static volatile uint64_t s_s2 = getSecureRandomU64();
static volatile uint64_t s_s3 = getSecureRandomU64();
uint64_t s0 = s_s0;
uint64_t s1 = s_s1;
uint64_t s2 = s_s2;
uint64_t s3 = s_s3;
const uint64_t s1x5 = s1 * 5;
const uint64_t result = ((s1x5 << 7U) | (s1x5 >> 57U)) * 9;
const uint64_t t = s1 << 17U;
s2 ^= s0;
s3 ^= s1;
s1 ^= s2;
s0 ^= s3;
s2 ^= t;
s3 = ((s3 << 45U) | (s3 >> 19U));
s_s0 = s0;
s_s1 = s1;
s_s2 = s2;
s_s3 = s3;
return result;
}
bool scopy(char *const dest, const unsigned int len, const char *const src) noexcept
{
if (!len)
return false; // sanity check
if (!src) {
*dest = (char)0;
return true;
}
unsigned int i = 0;
for (;;) {
if (i >= len) {
dest[len - 1] = 0;
return false;
}
if ((dest[i] = src[i]) == 0)
return true;
++i;
}
}
} // namespace Utils
} // namespace ZeroTier