ZeroTierOne/node/IncomingPacket.cpp
2020-01-13 14:04:17 -08:00

802 lines
32 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "IncomingPacket.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
#include "Peer.hpp"
#include "NetworkController.hpp"
#include "SelfAwareness.hpp"
#include "Salsa20.hpp"
#include "Node.hpp"
#include "CertificateOfMembership.hpp"
#include "Capability.hpp"
#include "Tag.hpp"
#include "Revocation.hpp"
#include "Trace.hpp"
#include <cstring>
#include <cstdlib>
#include <list>
namespace ZeroTier {
namespace {
//////////////////////////////////////////////////////////////////////////////
// Implementation of each protocol verb //
//////////////////////////////////////////////////////////////////////////////
void _sendErrorNeedCredentials(IncomingPacket &pkt,const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer,const uint64_t nwid,const SharedPtr<Path> &path)
{
Packet outp(pkt.source(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((uint8_t)pkt.verb());
outp.append(pkt.packetId());
outp.append((uint8_t)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE);
outp.append(nwid);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
ZT_ALWAYS_INLINE bool _doHELLO(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const bool alreadyAuthenticated,const SharedPtr<Path> &path)
{
const int64_t now = RR->node->now();
const uint64_t pid = pkt.packetId();
const Address fromAddress(pkt.source());
const unsigned int protoVersion = pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
const unsigned int vMajor = pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
const unsigned int vMinor = pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
const unsigned int vRevision = pkt.at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const int64_t timestamp = pkt.at<int64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id;
unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
if (protoVersion < ZT_PROTO_VERSION_MIN) {
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"protocol version too old");
return true;
}
if (fromAddress != id.address()) {
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"identity/address mismatch");
return true;
}
SharedPtr<Peer> peer(RR->topology->get(id.address()));
if (peer) {
// We already have an identity with this address -- check for collisions
if (!alreadyAuthenticated) {
if (peer->identity() != id) {
// Identity is different from the one we already have -- address collision
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,path->address()))
return true;
uint8_t key[ZT_PEER_SECRET_KEY_LENGTH];
if (RR->identity.agree(id,key)) {
if (pkt.dearmor(key)) { // ensure packet is authentic, otherwise drop
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"address collision");
Packet outp(id.address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((uint8_t)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION);
outp.armor(key,true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,path,pid,fromAddress,pkt.hops(),"invalid MAC");
}
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,path,pid,fromAddress,pkt.hops(),"invalid identity");
}
return true;
} else {
// Identity is the same as the one we already have -- check packet integrity
if (!pkt.dearmor(peer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,path,pid,fromAddress,pkt.hops(),"invalid MAC");
return true;
}
// Continue at // VALID
}
} // else if alreadyAuthenticated then continue at // VALID
} else {
// We don't already have an identity with this address -- validate and learn it
// Sanity check: this basically can't happen
if (alreadyAuthenticated) {
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"illegal alreadyAuthenticated state");
return true;
}
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,path->address())) {
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"rate limit exceeded");
return true;
}
// Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap)
SharedPtr<Peer> newPeer(new Peer(RR,RR->identity,id));
if (!pkt.dearmor(newPeer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,path,pid,fromAddress,pkt.hops(),"invalid MAC");
return true;
}
// Check that identity's address is valid as per the derivation function
if (!id.locallyValidate()) {
RR->t->incomingPacketDroppedHELLO(tPtr,path,pid,fromAddress,"invalid identity");
return true;
}
peer = RR->topology->add(newPeer);
// Continue at // VALID
}
// VALID -- if we made it here, packet passed identity and authenticity checks!
// Get address to which this packet was sent to learn our external surface address if packet was direct.
if (pkt.hops() == 0) {
InetAddress externalSurfaceAddress;
if (ptr < pkt.size()) {
ptr += externalSurfaceAddress.deserialize(pkt,ptr);
if ((externalSurfaceAddress)&&(pkt.hops() == 0))
RR->sa->iam(tPtr,id.address(),path->localSocket(),path->address(),externalSurfaceAddress,RR->topology->isRoot(id),now);
}
}
// Send OK(HELLO) with an echo of the packet's timestamp and some of the same
// information about us: version, sent-to address, etc.
Packet outp(id.address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint64_t)timestamp);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
path->address().serialize(outp);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),now);
peer->setRemoteVersion(protoVersion,vMajor,vMinor,vRevision); // important for this to go first so received() knows the version
peer->received(tPtr,path,pkt.hops(),pid,pkt.payloadLength(),Packet::VERB_HELLO,0,Packet::VERB_NOP,0);
return true;
}
ZT_ALWAYS_INLINE bool _doERROR(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const Packet::Verb inReVerb = (Packet::Verb)pkt[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
const uint64_t inRePacketId = pkt.at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID);
const Packet::ErrorCode errorCode = (Packet::ErrorCode)pkt[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
uint64_t networkId = 0;
/* Security note: we do not gate doERROR() with expectingReplyTo() to
* avoid having to log every outgoing packet ID. Instead we put the
* logic to determine whether we should consider an ERROR in each
* error handler. In most cases these are only trusted in specific
* circumstances. */
switch(errorCode) {
case Packet::ERROR_OBJ_NOT_FOUND:
// Object not found, currently only meaningful from network controllers.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
networkId = pkt.at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_UNSUPPORTED_OPERATION:
// This can be sent in response to any operation, though right now we only
// consider it meaningful from network controllers. This would indicate
// that the queried node does not support acting as a controller.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
networkId = pkt.at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if ((network)&&(network->controller() == peer->address()))
network->setNotFound();
}
break;
case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: {
// Peers can send this to ask for a cert for a network.
networkId = pkt.at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
const int64_t now = RR->node->now();
if ((network)&&(network->config().com))
network->pushCredentialsNow(tPtr,peer->address(),now);
} break;
case Packet::ERROR_NETWORK_ACCESS_DENIED_: {
// Network controller: network access denied.
networkId = pkt.at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if ((network)&&(network->controller() == peer->address()))
network->setAccessDenied();
} break;
default: break;
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_ERROR,inRePacketId,inReVerb,networkId);
return true;
}
ZT_ALWAYS_INLINE bool _doOK(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const Packet::Verb inReVerb = (Packet::Verb)pkt[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
const uint64_t inRePacketId = pkt.at<uint64_t>(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID);
uint64_t networkId = 0;
if (!RR->node->expectingReplyTo(inRePacketId))
return true;
switch(inReVerb) {
case Packet::VERB_HELLO: {
const uint64_t latency = RR->node->now() - pkt.at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP);
const unsigned int vProto = pkt[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION];
const unsigned int vMajor = pkt[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION];
const unsigned int vMinor = pkt[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION];
const unsigned int vRevision = pkt.at<uint16_t>(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION);
if (vProto < ZT_PROTO_VERSION_MIN)
return true;
if (pkt.hops() == 0) {
if ((ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2) < pkt.size()) {
InetAddress externalSurfaceAddress;
externalSurfaceAddress.deserialize(pkt,ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2);
if (externalSurfaceAddress)
RR->sa->iam(tPtr,peer->address(),path->localSocket(),path->address(),externalSurfaceAddress,RR->topology->isRoot(peer->identity()),RR->node->now());
}
}
peer->updateLatency((unsigned int)latency);
peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision);
} break;
case Packet::VERB_WHOIS:
if (RR->topology->isRoot(peer->identity())) {
unsigned int p = ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY;
while (p < pkt.size()) {
try {
Identity id;
p += id.deserialize(pkt,p);
if (id)
RR->sw->doAnythingWaitingForPeer(tPtr,RR->topology->add(SharedPtr<Peer>(new Peer(RR,RR->identity,id))));
} catch ( ... ) {
break;
}
}
}
break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: {
networkId = pkt.at<uint64_t>(ZT_PROTO_VERB_OK_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if (network)
network->handleConfigChunk(tPtr,pkt.packetId(),pkt.source(),pkt,ZT_PROTO_VERB_OK_IDX_PAYLOAD);
} break;
case Packet::VERB_MULTICAST_GATHER: {
} break;
default: break;
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_OK,inRePacketId,inReVerb,networkId);
return true;
}
ZT_ALWAYS_INLINE bool _doWHOIS(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
if (!peer->rateGateInboundWhoisRequest(RR->node->now()))
return true;
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(pkt.packetId());
unsigned int count = 0;
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
while ((ptr + ZT_ADDRESS_LENGTH) <= pkt.size()) {
const Address addr(pkt.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
ptr += ZT_ADDRESS_LENGTH;
const Identity id(RR->topology->getIdentity(tPtr,addr));
if (id) {
id.serialize(outp,false);
++count;
} else {
// Request unknown WHOIS from upstream from us (if we have one)
RR->sw->requestWhois(tPtr,RR->node->now(),addr);
}
}
if (count > 0) {
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_WHOIS,0,Packet::VERB_NOP,0);
return true;
}
ZT_ALWAYS_INLINE bool _doRENDEZVOUS(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
if (RR->topology->isRoot(peer->identity())) {
uint16_t junk = (uint16_t)Utils::random();
const Address with(pkt.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
const SharedPtr<Peer> rendezvousWith(RR->topology->get(with));
if (rendezvousWith) {
const unsigned int port = pkt.at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
const unsigned int addrlen = pkt[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
InetAddress atAddr(pkt.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
if (rendezvousWith->shouldTryPath(tPtr,RR->node->now(),peer,atAddr)) {
if (atAddr.isV4())
RR->node->putPacket(tPtr,path->localSocket(),atAddr,&junk,2,2); // IPv4 "firewall opener"
rendezvousWith->sendHELLO(tPtr,path->localSocket(),atAddr,RR->node->now());
}
}
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_RENDEZVOUS,0,Packet::VERB_NOP,0);
return true;
}
ZT_ALWAYS_INLINE bool _doFRAME(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const uint64_t nwid = pkt.at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
if (network->gate(tPtr,peer)) {
if (pkt.size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = pkt.at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
const MAC sourceMac(peer->address(),nwid);
const unsigned int frameLen = pkt.size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
const uint8_t *const frameData = reinterpret_cast<const uint8_t *>(pkt.data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
if (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),sourceMac,network->mac(),frameData,frameLen,etherType,0) > 0)
RR->node->putFrame(tPtr,nwid,network->userPtr(),sourceMac,network->mac(),etherType,0,(const void *)frameData,frameLen);
}
} else {
_sendErrorNeedCredentials(pkt,RR,tPtr,peer,nwid,path);
return false;
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
ZT_ALWAYS_INLINE bool _doEXT_FRAME(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const uint64_t nwid = pkt.at<uint64_t>(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
const unsigned int flags = pkt[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS];
unsigned int comLen = 0;
if ((flags & 0x01) != 0) { // inline COM with EXT_FRAME is deprecated but still used with old peers
CertificateOfMembership com;
comLen = com.deserialize(pkt,ZT_PROTO_VERB_EXT_FRAME_IDX_COM);
if (com)
network->addCredential(tPtr,com);
}
if (!network->gate(tPtr,peer)) {
RR->t->incomingNetworkAccessDenied(tPtr,network,path,pkt.packetId(),pkt.size(),peer->address(),Packet::VERB_EXT_FRAME,true);
_sendErrorNeedCredentials(pkt,RR,tPtr,peer,nwid,path);
return false;
}
if (pkt.size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = pkt.at<uint16_t>(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE);
const MAC to(pkt.field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO,ZT_PROTO_VERB_EXT_FRAME_LEN_TO),ZT_PROTO_VERB_EXT_FRAME_LEN_TO);
const MAC from(pkt.field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM,ZT_PROTO_VERB_EXT_FRAME_LEN_FROM),ZT_PROTO_VERB_EXT_FRAME_LEN_FROM);
const unsigned int frameLen = pkt.size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD);
const uint8_t *const frameData = (const uint8_t *)pkt.field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD,frameLen);
if ((!from)||(from == network->mac())) {
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
switch (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),from,to,frameData,frameLen,etherType,0)) {
case 1:
if (from != MAC(peer->address(),nwid)) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from,peer->address());
} else {
RR->t->incomingNetworkFrameDropped(tPtr,network,path,pkt.packetId(),pkt.size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (remote)");
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
} else if (to != network->mac()) {
if (to.isMulticast()) {
if (network->config().multicastLimit == 0) {
RR->t->incomingNetworkFrameDropped(tPtr,network,path,pkt.packetId(),pkt.size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"multicast disabled");
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
} else if (!network->config().permitsBridging(RR->identity.address())) {
RR->t->incomingNetworkFrameDropped(tPtr,network,path,pkt.packetId(),pkt.size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (local)");
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
}
// fall through -- 2 means accept regardless of bridging checks or other restrictions
case 2:
RR->node->putFrame(tPtr,nwid,network->userPtr(),from,to,etherType,0,(const void *)frameData,frameLen);
break;
}
}
if ((flags & 0x10U) != 0) { // ACK requested
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_EXT_FRAME);
outp.append((uint64_t)pkt.packetId());
outp.append((uint64_t)nwid);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid);
return true;
}
ZT_ALWAYS_INLINE bool _doECHO(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
if (!peer->rateGateEchoRequest(RR->node->now()))
return true;
const uint64_t pid = pkt.packetId();
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_ECHO);
outp.append((uint64_t)pid);
if (pkt.size() > ZT_PACKET_IDX_PAYLOAD)
outp.append(reinterpret_cast<const unsigned char *>(pkt.data()) + ZT_PACKET_IDX_PAYLOAD,pkt.size() - ZT_PACKET_IDX_PAYLOAD);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
peer->received(tPtr,path,pkt.hops(),pid,pkt.payloadLength(),Packet::VERB_ECHO,0,Packet::VERB_NOP,0);
return true;
}
ZT_ALWAYS_INLINE bool _doNETWORK_CREDENTIALS(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
CertificateOfMembership com;
Capability cap;
Tag tag;
Revocation revocation;
CertificateOfOwnership coo;
SharedPtr<Network> network;
unsigned int p = ZT_PACKET_IDX_PAYLOAD;
while ((p < pkt.size())&&(pkt[p] != 0)) {
p += com.deserialize(pkt,p);
if (com) {
network = RR->node->network(com.networkId());
if (network) {
if (network->addCredential(tPtr,com) == Membership::ADD_DEFERRED_FOR_WHOIS)
return false;
}
}
}
++p; // skip trailing 0 after COMs if present
if (p < pkt.size()) { // older ZeroTier versions do not send capabilities, tags, or revocations
const unsigned int numCapabilities = pkt.at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numCapabilities;++i) {
p += cap.deserialize(pkt,p);
if ((!network)||(network->id() != cap.networkId()))
network = RR->node->network(cap.networkId());
if (network) {
if (network->addCredential(tPtr,cap) == Membership::ADD_DEFERRED_FOR_WHOIS)
return false;
}
}
if (p >= pkt.size()) return true;
const unsigned int numTags = pkt.at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numTags;++i) {
p += tag.deserialize(pkt,p);
if ((!network)||(network->id() != tag.networkId()))
network = RR->node->network(tag.networkId());
if (network) {
if (network->addCredential(tPtr,tag) == Membership::ADD_DEFERRED_FOR_WHOIS)
return false;
}
}
if (p >= pkt.size()) return true;
const unsigned int numRevocations = pkt.at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numRevocations;++i) {
p += revocation.deserialize(pkt,p);
if ((!network)||(network->id() != revocation.networkId()))
network = RR->node->network(revocation.networkId());
if (network) {
if (network->addCredential(tPtr,peer->address(),revocation) == Membership::ADD_DEFERRED_FOR_WHOIS)
return false;
}
}
if (p >= pkt.size()) return true;
const unsigned int numCoos = pkt.at<uint16_t>(p); p += 2;
for(unsigned int i=0;i<numCoos;++i) {
p += coo.deserialize(pkt,p);
if ((!network)||(network->id() != coo.networkId()))
network = RR->node->network(coo.networkId());
if (network) {
if (network->addCredential(tPtr,coo) == Membership::ADD_DEFERRED_FOR_WHOIS)
return false;
}
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_NETWORK_CREDENTIALS,0,Packet::VERB_NOP,(network) ? network->id() : 0);
return true;
}
ZT_ALWAYS_INLINE bool _doNETWORK_CONFIG_REQUEST(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const uint64_t nwid = pkt.at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
const unsigned int hopCount = pkt.hops();
const uint64_t requestPacketId = pkt.packetId();
if (RR->localNetworkController) {
const unsigned int metaDataLength = (ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN <= pkt.size()) ? pkt.at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN) : 0;
const char *metaDataBytes = (metaDataLength != 0) ? (const char *)pkt.field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength) : (const char *)0;
const Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> metaData(metaDataBytes,metaDataLength);
RR->localNetworkController->request(nwid,(hopCount > 0) ? InetAddress() : path->address(),requestPacketId,peer->identity(),metaData);
} else {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
outp.append(nwid);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
peer->received(tPtr,path,hopCount,requestPacketId,pkt.payloadLength(),Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP,nwid);
return true;
}
ZT_ALWAYS_INLINE bool _doNETWORK_CONFIG(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const SharedPtr<Network> network(RR->node->network(pkt.at<uint64_t>(ZT_PACKET_IDX_PAYLOAD)));
if (network) {
const uint64_t configUpdateId = network->handleConfigChunk(tPtr,pkt.packetId(),pkt.source(),pkt,ZT_PACKET_IDX_PAYLOAD);
if (configUpdateId) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_ECHO);
outp.append((uint64_t)pkt.packetId());
outp.append((uint64_t)network->id());
outp.append((uint64_t)configUpdateId);
outp.armor(peer->key(),true);
path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now());
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_NETWORK_CONFIG,0,Packet::VERB_NOP,(network) ? network->id() : 0);
return true;
}
ZT_ALWAYS_INLINE bool _doMULTICAST_GATHER(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const uint64_t nwid = pkt.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
const unsigned int gatherLimit = pkt.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
const SharedPtr<Network> network(RR->node->network(nwid));
if ((flags & 0x01) != 0) {
try {
CertificateOfMembership com;
com.deserialize(pkt,ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM);
if ((com)&&(network))
network->addCredential(tPtr,com);
} catch ( ... ) {} // discard invalid COMs
}
if (network) {
if (!network->gate(tPtr,peer)) {
_sendErrorNeedCredentials(pkt,RR,tPtr,peer,nwid,path);
return false;
}
}
const int64_t now = RR->node->now();
if (gatherLimit) {
// TODO
/*
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
outp.append(packetId());
outp.append(nwid);
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
const unsigned int gatheredLocally = RR->mc->gather(peer->address(),nwid,mg,outp,gatherLimit);
if (gatheredLocally > 0) {
outp.armor(peer->key(),true);
_path->send(RR,tPtr,outp.data(),outp.size(),now);
}
*/
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_MULTICAST_GATHER,0,Packet::VERB_NOP,nwid);
return true;
}
ZT_ALWAYS_INLINE bool _doPUSH_DIRECT_PATHS(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
const int64_t now = RR->node->now();
if (peer->rateGateInboundPushDirectPaths(now)) {
uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE+1][2]; // [][0] is v4, [][1] is v6
memset(countPerScope,0,sizeof(countPerScope));
unsigned int count = pkt.at<uint16_t>(ZT_PACKET_IDX_PAYLOAD);
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2;
uint16_t junk = (uint16_t)Utils::random();
while (count--) {
/* unsigned int flags = (*this)[ptr++]; */ ++ptr;
unsigned int extLen = pkt.at<uint16_t>(ptr); ptr += 2;
ptr += extLen; // unused right now
unsigned int addrType = pkt[ptr++];
unsigned int addrLen = pkt[ptr++];
switch(addrType) {
case 4: {
const InetAddress a(pkt.field(ptr,4),4,pkt.at<uint16_t>(ptr + 4));
if (peer->shouldTryPath(tPtr,now,peer,a)) {
if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
RR->node->putPacket(tPtr,path->localSocket(),a,&junk,2,2); // IPv4 "firewall opener"
++junk;
peer->sendHELLO(tPtr,-1,a,now);
}
}
} break;
case 6: {
const InetAddress a(pkt.field(ptr,16),16,pkt.at<uint16_t>(ptr + 16));
if (peer->shouldTryPath(tPtr,now,peer,a)) {
if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
peer->sendHELLO(tPtr,-1,a,now);
}
} break;
}
ptr += addrLen;
}
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP,0);
return true;
}
ZT_ALWAYS_INLINE bool _doUSER_MESSAGE(IncomingPacket &pkt,const RuntimeEnvironment *const RR,void *const tPtr,const SharedPtr<Peer> &peer,const SharedPtr<Path> &path)
{
if (likely(pkt.size() >= (ZT_PACKET_IDX_PAYLOAD + 8))) {
ZT_UserMessage um;
um.origin = peer->address().toInt();
um.typeId = pkt.at<uint64_t>(ZT_PACKET_IDX_PAYLOAD);
um.data = reinterpret_cast<const void *>(reinterpret_cast<const uint8_t *>(pkt.data()) + ZT_PACKET_IDX_PAYLOAD + 8);
um.length = pkt.size() - (ZT_PACKET_IDX_PAYLOAD + 8);
RR->node->postEvent(tPtr,ZT_EVENT_USER_MESSAGE,reinterpret_cast<const void *>(&um));
}
peer->received(tPtr,path,pkt.hops(),pkt.packetId(),pkt.payloadLength(),Packet::VERB_USER_MESSAGE,0,Packet::VERB_NOP,0);
return true;
}
//////////////////////////////////////////////////////////////////////////////
} // anonymous namespace
bool IncomingPacket::tryDecode(const RuntimeEnvironment *RR,void *tPtr)
{
const Address sourceAddress(source());
try {
// Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear)
const unsigned int c = cipher();
bool trusted = false;
if (c == ZT_PROTO_CIPHER_SUITE__NONE) {
// If this is marked as a packet via a trusted path, check source address and path ID.
// Obviously if no trusted paths are configured this always returns false and such
// packets are dropped on the floor.
const uint64_t tpid = trustedPathId();
if (RR->topology->shouldInboundPathBeTrusted(_path->address(),tpid)) {
trusted = true;
} else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"path not trusted");
return true;
}
} else if ((c == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(verb() == Packet::VERB_HELLO)) {
// Only HELLO is allowed in the clear, but will still have a MAC
return _doHELLO(*this,RR,tPtr,false,_path);
}
const SharedPtr<Peer> peer(RR->topology->get(sourceAddress));
if (peer) {
if (!trusted) {
if (!dearmor(peer->key())) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"invalid MAC");
return true;
}
}
if (!uncompress()) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),Packet::VERB_NOP,"LZ4 decompression failed");
return true;
}
const Packet::Verb v = verb();
bool r = true;
switch(v) {
//case Packet::VERB_NOP:
default: // ignore unknown verbs, but if they pass auth check they are "received"
peer->received(tPtr,_path,hops(),packetId(),payloadLength(),v,0,Packet::VERB_NOP,0);
break;
case Packet::VERB_HELLO: r = _doHELLO(*this,RR,tPtr,true,_path); break;
case Packet::VERB_ERROR: r = _doERROR(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_OK: r = _doOK(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_WHOIS: r = _doWHOIS(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_RENDEZVOUS: r = _doRENDEZVOUS(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_FRAME: r = _doFRAME(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_EXT_FRAME: r = _doEXT_FRAME(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_ECHO: r = _doECHO(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_NETWORK_CREDENTIALS: r = _doNETWORK_CREDENTIALS(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: r = _doNETWORK_CONFIG_REQUEST(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_NETWORK_CONFIG: r = _doNETWORK_CONFIG(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_MULTICAST_GATHER: r = _doMULTICAST_GATHER(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_PUSH_DIRECT_PATHS: r = _doPUSH_DIRECT_PATHS(*this,RR,tPtr,peer,_path); break;
case Packet::VERB_USER_MESSAGE: r = _doUSER_MESSAGE(*this,RR,tPtr,peer,_path); break;
}
return r;
} else {
RR->sw->requestWhois(tPtr,RR->node->now(),sourceAddress);
return false;
}
} catch (int ztExcCode) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),verb(),"unexpected exception in tryDecode()");
return true;
} catch ( ... ) {
RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),verb(),"unexpected exception in tryDecode()");
return true;
}
}
} // namespace ZeroTier