ZeroTierOne/node/Utils.hpp
2020-01-10 22:12:56 -08:00

422 lines
12 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_UTILS_HPP
#define ZT_UTILS_HPP
#include <cstdio>
#include <cstdlib>
#include <cstdint>
#include <cstring>
#include <ctime>
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#include <emmintrin.h>
#include <xmmintrin.h>
#include <immintrin.h>
#endif
#include <string>
#include <stdexcept>
#include <vector>
#include <map>
#include "Constants.hpp"
namespace ZeroTier {
namespace Utils {
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
struct CPUIDRegisters
{
uint32_t eax,ebx,ecx,edx;
bool rdrand;
bool aes;
CPUIDRegisters();
};
extern CPUIDRegisters CPUID;
#endif
/**
* Hexadecimal characters 0-f
*/
extern const char HEXCHARS[16];
/**
* Perform a time-invariant binary comparison
*
* @param a First binary string
* @param b Second binary string
* @param len Length of strings
* @return True if strings are equal
*/
bool secureEq(const void *a,const void *b,unsigned int len);
/**
* Zero memory, ensuring to avoid any compiler optimizations or other things that may stop this.
*/
void burn(void *ptr,unsigned int len);
/**
* @param n Number to convert
* @param s Buffer, at least 24 bytes in size
* @return String containing 'n' in base 10 form
*/
char *decimal(unsigned long n,char s[24]);
/**
* Convert an unsigned integer into hex
*
* @param i Any unsigned integer
* @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur.
* @return Pointer to s containing hex string with trailing zero byte
*/
template<typename I>
static inline char *hex(I x,char *s)
{
char *const r = s;
for(unsigned int i=0,b=(sizeof(x)*8);i<sizeof(x);++i) {
*(s++) = HEXCHARS[(x >> (b -= 4)) & 0xf];
*(s++) = HEXCHARS[(x >> (b -= 4)) & 0xf];
}
*s = (char)0;
return r;
}
/**
* Convert the least significant 40 bits of a uint64_t to hex
*
* @param i Unsigned 64-bit int
* @param s Buffer of size [11] to receive 10 hex characters
* @return Pointer to buffer
*/
char *hex10(uint64_t i,char s[11]);
/**
* Convert a byte array into hex
*
* @param d Bytes
* @param l Length of bytes
* @param s String buffer, must be at least (l*2)+1 in size or overflow will occur
* @return Pointer to filled string buffer
*/
char *hex(const void *d,unsigned int l,char *s);
/**
* Decode a hex string
*
* @param h Hex C-string (non hex chars are ignored)
* @param hlen Maximum length of string (will stop at terminating zero)
* @param buf Output buffer
* @param buflen Length of output buffer
* @return Number of written bytes
*/
unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen);
/**
* Generate secure random bytes
*
* This will try to use whatever OS sources of entropy are available. It's
* guarded by an internal mutex so it's thread-safe.
*
* @param buf Buffer to fill
* @param bytes Number of random bytes to generate
*/
void getSecureRandom(void *buf,unsigned int bytes);
/**
* Encode string to base32
*
* @param data Binary data to encode
* @param length Length of data in bytes
* @param result Result buffer
* @param bufSize Size of result buffer
* @return Number of bytes written
*/
int b32e(const uint8_t *data,int length,char *result,int bufSize);
/**
* Decode base32 string
*
* @param encoded C-string in base32 format (non-base32 characters are ignored)
* @param result Result buffer
* @param bufSize Size of result buffer
* @return Number of bytes written or -1 on error
*/
int b32d(const char *encoded, uint8_t *result, int bufSize);
/**
* Get a non-cryptographic random integer
*/
uint64_t random();
/**
* Perform a safe C string copy, ALWAYS null-terminating the result
*
* This will never ever EVER result in dest[] not being null-terminated
* regardless of any input parameter (other than len==0 which is invalid).
*
* @param dest Destination buffer (must not be NULL)
* @param len Length of dest[] (if zero, false is returned and nothing happens)
* @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
* @return True on success, false on overflow (buffer will still be 0-terminated)
*/
bool scopy(char *dest,unsigned int len,const char *src);
static ZT_ALWAYS_INLINE char *stok(char *str,const char *delim,char **saveptr)
{
#ifdef __WINDOWS__
return strtok_s(str,delim,saveptr);
#else
return strtok_r(str,delim,saveptr);
#endif
}
#if 0
static ZT_ALWAYS_INLINE int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); }
static ZT_ALWAYS_INLINE unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); }
static ZT_ALWAYS_INLINE long strToLong(const char *s) { return strtol(s,(char **)0,10); }
static ZT_ALWAYS_INLINE long long strTo64(const char *s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s,(char **)0,10);
#else
return strtoll(s,(char **)0,10);
#endif
}
static ZT_ALWAYS_INLINE unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); }
static ZT_ALWAYS_INLINE int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); }
static ZT_ALWAYS_INLINE unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); }
static ZT_ALWAYS_INLINE long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); }
#endif
static ZT_ALWAYS_INLINE unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); }
static ZT_ALWAYS_INLINE unsigned long long strToU64(const char *s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s,(char **)0,10);
#else
return strtoull(s,(char **)0,10);
#endif
}
static ZT_ALWAYS_INLINE long long hexStrTo64(const char *s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s,(char **)0,16);
#else
return strtoll(s,(char **)0,16);
#endif
}
static ZT_ALWAYS_INLINE unsigned long long hexStrToU64(const char *s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s,(char **)0,16);
#else
return strtoull(s,(char **)0,16);
#endif
}
/**
* Calculate a non-cryptographic hash of a byte string
*
* @param key Key to hash
* @param len Length in bytes
* @return Non-cryptographic hash suitable for use in a hash table
*/
static ZT_ALWAYS_INLINE unsigned long hashString(const void *restrict key,const unsigned int len)
{
const uint8_t *p = reinterpret_cast<const uint8_t *>(key);
unsigned long h = 0;
for (unsigned int i=0;i<len;++i) {
h += p[i];
h += (h << 10U);
h ^= (h >> 6U);
}
h += (h << 3U);
h ^= (h >> 11U);
h += (h << 15U);
return h;
}
#ifdef __GNUC__
static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) { return (unsigned int)__builtin_popcountl((unsigned long)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) { return (unsigned int)__builtin_popcountll((unsigned long long)v); }
#else
template<typename T>
static ZT_ALWAYS_INLINE unsigned int countBits(T v)
{
v = v - ((v >> 1) & (T)~(T)0/3);
v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);
v = (v + (v >> 4)) & (T)~(T)0/255*15;
return (unsigned int)((v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8));
}
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
static ZT_ALWAYS_INLINE uint8_t hton(uint8_t n) { return n; }
static ZT_ALWAYS_INLINE int8_t hton(int8_t n) { return n; }
static ZT_ALWAYS_INLINE uint16_t hton(uint16_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return htons(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap16(n);
#endif
#else
return htons(n);
#endif
}
static ZT_ALWAYS_INLINE int16_t hton(int16_t n) { return (int16_t)Utils::hton((uint16_t)n); }
static ZT_ALWAYS_INLINE uint32_t hton(uint32_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return htonl(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap32(n);
#endif
#else
return htonl(n);
#endif
}
static ZT_ALWAYS_INLINE int32_t hton(int32_t n) { return (int32_t)Utils::hton((uint32_t)n); }
static ZT_ALWAYS_INLINE uint64_t hton(uint64_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return bswap64(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap64(n);
#endif
#else
return (
((n & 0x00000000000000FFULL) << 56) |
((n & 0x000000000000FF00ULL) << 40) |
((n & 0x0000000000FF0000ULL) << 24) |
((n & 0x00000000FF000000ULL) << 8) |
((n & 0x000000FF00000000ULL) >> 8) |
((n & 0x0000FF0000000000ULL) >> 24) |
((n & 0x00FF000000000000ULL) >> 40) |
((n & 0xFF00000000000000ULL) >> 56)
);
#endif
}
static ZT_ALWAYS_INLINE int64_t hton(int64_t n) { return (int64_t)hton((uint64_t)n); }
#else
template<typename T>
static ZT_ALWAYS_INLINE T hton(T n) { return n; }
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
static ZT_ALWAYS_INLINE uint8_t ntoh(uint8_t n) { return n; }
static ZT_ALWAYS_INLINE int8_t ntoh(int8_t n) { return n; }
static ZT_ALWAYS_INLINE uint16_t ntoh(uint16_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return htons(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap16(n);
#endif
#else
return htons(n);
#endif
}
static ZT_ALWAYS_INLINE int16_t ntoh(int16_t n) { return (int16_t)Utils::ntoh((uint16_t)n); }
static ZT_ALWAYS_INLINE uint32_t ntoh(uint32_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return ntohl(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap32(n);
#endif
#else
return ntohl(n);
#endif
}
static ZT_ALWAYS_INLINE int32_t ntoh(int32_t n) { return (int32_t)Utils::ntoh((uint32_t)n); }
static ZT_ALWAYS_INLINE uint64_t ntoh(uint64_t n)
{
#if defined(__GNUC__)
#if defined(__FreeBSD__)
return bswap64(n);
#elif (!defined(__OpenBSD__))
return __builtin_bswap64(n);
#endif
#else
return (
((n & 0x00000000000000FFULL) << 56) |
((n & 0x000000000000FF00ULL) << 40) |
((n & 0x0000000000FF0000ULL) << 24) |
((n & 0x00000000FF000000ULL) << 8) |
((n & 0x000000FF00000000ULL) >> 8) |
((n & 0x0000FF0000000000ULL) >> 24) |
((n & 0x00FF000000000000ULL) >> 40) |
((n & 0xFF00000000000000ULL) >> 56)
);
#endif
}
static ZT_ALWAYS_INLINE int64_t ntoh(int64_t n) { return (int64_t)ntoh((uint64_t)n); }
#else
template<typename T>
static ZT_ALWAYS_INLINE T ntoh(T n) { return n; }
#endif
static ZT_ALWAYS_INLINE uint64_t readUInt64(const void *const p)
{
#ifdef ZT_NO_TYPE_PUNNING
const uint8_t *const b = reinterpret_cast<const uint8_t *>(p);
return (
((uint64_t)b[0] << 56) |
((uint64_t)b[1] << 48) |
((uint64_t)b[2] << 40) |
((uint64_t)b[3] << 32) |
((uint64_t)b[4] << 24) |
((uint64_t)b[5] << 16) |
((uint64_t)b[6] << 8) |
(uint64_t)b[7]);
#else
return ntoh(*reinterpret_cast<const uint64_t *>(p));
#endif
}
static ZT_ALWAYS_INLINE void putUInt64(void *const p,const uint64_t i)
{
#ifdef ZT_NO_TYPE_PUNNING
uint8_t *const b = reinterpret_cast<uint8_t *>(p);
p[0] = (uint8_t)(i << 56);
p[1] = (uint8_t)(i << 48);
p[2] = (uint8_t)(i << 40);
p[3] = (uint8_t)(i << 32);
p[4] = (uint8_t)(i << 24);
p[5] = (uint8_t)(i << 16);
p[6] = (uint8_t)(i << 8);
p[7] = (uint8_t)i;
#else
*reinterpret_cast<uint64_t *>(p) = Utils::hton(i);
#endif
}
} // namespace Utils
} // namespace ZeroTier
#endif