ZeroTierOne/core/Dictionary.hpp

438 lines
11 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_DICTIONARY_HPP
#define ZT_DICTIONARY_HPP
#include "Constants.hpp"
#include "Utils.hpp"
#include "Address.hpp"
#include "Buf.hpp"
#include "Containers.hpp"
namespace ZeroTier {
class Identity;
/**
* A simple key-value store for short keys
*
* This data structure is used for network configurations, node meta-data,
* and other open-definition protocol objects.
*
* If this seems a little odd, it is. It dates back to the very first alpha
* versions of ZeroTier and if it were redesigned today we'd use some kind
* of simple or standardized binary encoding. Nevertheless it is efficient
* and it works so there is no need to change it and break backward
* compatibility.
*
* Use of the append functions is faster than building and then encoding a
* dictionary for creating outbound packets.
*/
class Dictionary
{
public:
typedef SortedMap< String, Vector < uint8_t > >::const_iterator const_iterator;
Dictionary();
~Dictionary();
/**
* Get a reference to a value
*
* @param k Key to look up
* @return Reference to value
*/
Vector <uint8_t> &operator[](const char *k);
/**
* Get a const reference to a value
*
* @param k Key to look up
* @return Reference to value or to empty vector if not found
*/
const Vector <uint8_t> &operator[](const char *k) const;
/**
* @return Start of key->value pairs
*/
ZT_INLINE const_iterator begin() const noexcept
{ return m_entries.begin(); }
/**
* @return End of key->value pairs
*/
ZT_INLINE const_iterator end() const noexcept
{ return m_entries.end(); }
/**
* Add a boolean as '1' or '0'
*/
void add(const char *k, bool v);
/**
* Add an integer as a hexadecimal string value
*
* @param k Key to set
* @param v Integer to set, will be cast to uint64_t and stored as hex
*/
ZT_INLINE void add(const char *const k, const uint64_t v)
{ char buf[17]; add(k, Utils::hex((uint64_t)(v), buf)); }
/**
* Add an integer as a hexadecimal string value
*
* @param k Key to set
* @param v Integer to set, will be cast to uint64_t and stored as hex
*/
ZT_INLINE void add(const char *const k, const int64_t v)
{ char buf[17]; add(k, Utils::hex((uint64_t)(v), buf)); }
/**
* Add an address in 10-digit hex string format
*/
void add(const char *k, const Address &v);
/**
* Add a C string as a value
*/
void add(const char *k, const char *v);
/**
* Add a binary blob as a value
*/
void add(const char *k, const void *data, unsigned int len);
/**
* Get a boolean
*
* @param k Key to look up
* @param dfl Default value (default: false)
* @return Value of key or default if not found
*/
bool getB(const char *k, bool dfl = false) const;
/**
* Get an integer
*
* @param k Key to look up
* @param dfl Default value (default: 0)
* @return Value of key or default if not found
*/
uint64_t getUI(const char *k, uint64_t dfl = 0) const;
/**
* Get a C string
*
* If the buffer is too small the string will be truncated, but the
* buffer will always end in a terminating null no matter what.
*
* @param k Key to look up
* @param v Buffer to hold string
* @param cap Maximum size of string (including terminating null)
*/
char *getS(const char *k, char *v, unsigned int cap) const;
/**
* Get an object supporting the marshal/unmarshal interface pattern
*
* @tparam T Object type (inferred)
* @param k Key to look up
* @param obj Object to unmarshal() into
* @return True if unmarshal was successful
*/
template< typename T >
ZT_INLINE bool getO(const char *k, T &obj) const
{
const Vector< uint8_t > &d = (*this)[k];
if (d.empty())
return false;
return (obj.unmarshal(d.data(), (unsigned int)d.size()) > 0);
}
/**
* Add an object supporting the marshal/unmarshal interface pattern
*
* @tparam T Object type (inferred)
* @param k Key to add
* @param obj Object to marshal() into vector
* @return True if successful
*/
template< typename T >
ZT_INLINE bool addO(const char *k, T &obj)
{
uint8_t tmp[4096];
static_assert(sizeof(tmp) >= T::marshalSizeMax(),"buffer too small");
int l = obj.marshal(tmp);
if (l > 0) {
(*this)[k].assign(tmp, tmp + l);
return true;
}
return false;
}
/**
* Erase all entries in dictionary
*/
void clear();
/**
* @return Number of entries
*/
ZT_INLINE unsigned int size() const noexcept
{ return m_entries.size(); }
/**
* @return True if dictionary is not empty
*/
ZT_INLINE bool empty() const noexcept
{ return m_entries.empty(); }
/**
* Encode to a string in the supplied vector
*
* @param out String encoded dictionary
*/
void encode(Vector <uint8_t> &out) const;
/**
* Decode a string encoded dictionary
*
* This will decode up to 'len' but will also abort if it finds a
* null/zero as this could be a C string.
*
* @param data Data to decode
* @param len Length of data
* @return True if dictionary was formatted correctly and valid, false on error
*/
bool decode(const void *data, unsigned int len);
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const bool v)
{
s_appendKey(out, k);
out.push_back((uint8_t)(v ? '1' : '0'));
out.push_back((uint8_t)'\n');
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const Address v)
{
s_appendKey(out, k);
const uint64_t a = v.toInt();
static_assert(ZT_ADDRESS_LENGTH_HEX == 10, "this must be rewritten for any change in address length");
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 36U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 32U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 28U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 24U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 20U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 16U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 12U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 8U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 4U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[a & 0xfU]);
out.push_back((uint8_t)'\n');
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const uint64_t v)
{
s_appendKey(out, k);
char buf[17];
Utils::hex(v, buf);
unsigned int i = 0;
while (buf[i])
out.push_back((uint8_t)buf[i++]);
out.push_back((uint8_t)'\n');
}
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const int64_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const uint32_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const int32_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const uint16_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const int16_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const uint8_t v)
{ append(out, k, (uint64_t)v); }
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const int8_t v)
{ append(out, k, (uint64_t)v); }
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const char *v)
{
if ((v) && (*v)) {
s_appendKey(out, k);
while (*v)
s_appendValueByte(out, (uint8_t)*(v++));
out.push_back((uint8_t)'\n');
}
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
* @param vlen Value length in bytes
*/
template< typename V >
ZT_INLINE static void append(V &out, const char *const k, const void *const v, const unsigned int vlen)
{
s_appendKey(out, k);
for (unsigned int i = 0; i < vlen; ++i)
s_appendValueByte(out, reinterpret_cast<const uint8_t *>(v)[i]);
out.push_back((uint8_t)'\n');
}
/**
* Append a packet ID as raw bytes in the provided byte order
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param pid Packet ID
*/
template< typename V >
static ZT_INLINE void appendPacketId(V &out, const char *const k, const uint64_t pid)
{ append(out, k, &pid, 8); }
/**
* Append key=value with any object implementing the correct marshal interface
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Marshal-able object
* @return Bytes appended or negative on error (return value of marshal())
*/
template< typename V, typename T >
static ZT_INLINE int appendObject(V &out, const char *const k, const T &v)
{
uint8_t tmp[4096]; // large enough for any current object
if (T::marshalSizeMax() > sizeof(tmp))
return -1;
const int mlen = v.marshal(tmp);
if (mlen > 0)
append(out, k, tmp, (unsigned int)mlen);
return mlen;
}
/**
* Append #sub where sub is a hexadecimal string to 'name' and store in 'buf'
*
* @param buf Buffer to store subscript key
* @param name Root name
* @param sub Subscript index
* @return Pointer to 'buf'
*/
static char *arraySubscript(char buf[256],const char *name,const unsigned long sub) noexcept;
private:
template< typename V >
ZT_INLINE static void s_appendValueByte(V &out, const uint8_t c)
{
switch (c) {
case 0:
out.push_back(92); // backslash
out.push_back(48);
break;
case 10:
out.push_back(92);
out.push_back(110);
break;
case 13:
out.push_back(92);
out.push_back(114);
break;
case 61:
out.push_back(92);
out.push_back(101);
break;
case 92:
out.push_back(92);
out.push_back(92);
break;
default:
out.push_back(c);
break;
}
}
template< typename V >
ZT_INLINE static void s_appendKey(V &out, const char *k)
{
for (;;) {
const char c = *(k++);
if ((c >= 33) && (c <= 126) && (c != 61) && (c != 92)) // printable ASCII with no spaces, equals, or backslash
out.push_back((uint8_t)c);
else if (c == 0)
break;
}
out.push_back((uint8_t)'=');
}
static String s_key(const char *k) noexcept;
// Dictionary maps need to be sorted so that they always encode in the same order
// to yield blobs that can be hashed and signed reproducibly. Other than for areas
// where dictionaries are signed and verified the order doesn't matter.
SortedMap < String, Vector< uint8_t > > m_entries;
};
} // namespace ZeroTier
#endif