ZeroTierOne/core/Identity.cpp

640 lines
20 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Poly1305.hpp"
#include "Utils.hpp"
#include "Endpoint.hpp"
#include <algorithm>
#include <memory>
#include <utility>
namespace ZeroTier {
namespace {
// This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
void identityV0ProofOfWorkFrankenhash(const void *const publicKey, unsigned int publicKeyBytes, void *const digest, void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest, publicKey, publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
Utils::zero< ZT_V0_IDENTITY_GEN_MEMORY >(genmem);
Salsa20 s20(digest, (char *)digest + 32);
s20.crypt20((char *)genmem, (char *)genmem, 64);
for (unsigned long i = 64; i < ZT_V0_IDENTITY_GEN_MEMORY; i += 64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i, (char *)genmem + i, 64);
}
// Render final digest using genmem as a lookup table
for (unsigned long i = 0; i < (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest, digest, 64);
}
}
struct identityV0ProofOfWorkCriteria
{
ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb, char *gm) noexcept: digest(sb), genmem(gm)
{}
ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]) const noexcept
{
identityV0ProofOfWorkFrankenhash(pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 131072
struct p_CompareLittleEndian
{
#if __BYTE_ORDER == __BIG_ENDIAN
ZT_INLINE bool operator()(const uint64_t a,const uint64_t b) const noexcept { return Utils::swapBytes(a) < Utils::swapBytes(b); }
#else
ZT_INLINE bool operator()(const uint64_t a, const uint64_t b) const noexcept
{ return a < b; }
#endif
};
// This is a simpler memory-intensive frankenhash for V1 identity generation.
bool identityV1ProofOfWorkCriteria(const void *in, const unsigned int len, uint64_t *const w)
{
// Fill work buffer with pseudorandom bytes using a construction that should be
// relatively hostile to GPU acceleration. GPUs usually implement branching by
// executing all branches and then selecting the answer, which means this
// construction should require a GPU to do ~3X the work of a CPU per iteration.
SHA512(w, in, len);
for (unsigned int i = 8, j = 0; i < (ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8);) {
uint64_t *const ww = w + i;
const uint64_t *const wp = w + j;
i += 8;
j += 8;
if ((wp[0] & 7U) == 0) {
SHA512(ww, wp, 64);
} else if ((wp[1] & 15U) == 0) {
ww[0] = Utils::hton(Utils::ntoh(wp[0]) % 4503599627370101ULL);
ww[1] = Utils::hton(Utils::ntoh(wp[1]) % 4503599627370161ULL);
ww[2] = Utils::hton(Utils::ntoh(wp[2]) % 4503599627370227ULL);
ww[3] = Utils::hton(Utils::ntoh(wp[3]) % 4503599627370287ULL);
ww[4] = Utils::hton(Utils::ntoh(wp[4]) % 4503599627370299ULL);
ww[5] = Utils::hton(Utils::ntoh(wp[5]) % 4503599627370323ULL);
ww[6] = Utils::hton(Utils::ntoh(wp[6]) % 4503599627370353ULL);
ww[7] = Utils::hton(Utils::ntoh(wp[7]) % 4503599627370449ULL);
SHA384(ww, wp, 128);
} else {
Salsa20(wp, wp + 4).crypt12(wp, ww, 64);
}
}
// Sort 64-bit integers (little-endian) into ascending order and compute a
// cryptographic checksum. Sorting makes the order of values dependent on all
// other values, making a speed competitive implementation that skips on the
// memory requirement extremely hard.
std::sort(w, w + (ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8), p_CompareLittleEndian());
Poly1305::compute(w, w, ZT_IDENTITY_V1_POW_MEMORY_SIZE, w);
// PoW criteria passed if this is true. The value 1093 was chosen experimentally
// to yield a good average performance balancing fast setup with intentional
// identity collision resistance.
return (Utils::ntoh(w[0]) % 1000U) == 0;
}
} // anonymous namespace
const Identity Identity::NIL;
bool Identity::generate(const Type t)
{
m_type = t;
m_hasPrivate = true;
switch (t) {
case C25519: {
// Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
// address from the last 40 bits of this hash. This is different from the fingerprint hash for V0.
uint8_t digest[64];
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
Address address;
do {
C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest, genmem), m_pub, m_priv);
address.setTo(digest + 59);
} while (address.isReserved());
delete[] genmem;
m_fp.address = address; // address comes from PoW hash for type 0 identities
m_computeHash();
}
break;
case P384: {
//uint64_t w[ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8];
uint64_t *const w = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE);
if (!w)
return false;
try {
for (;;) {
// Loop until we pass the PoW criteria. The nonce is only 8 bits, so generate
// some new key material every time it wraps. The ECC384 generator is slightly
// faster so use that one.
m_pub[0] = 0; // zero nonce
C25519::generateCombined(m_pub + 1, m_priv + 1);
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
for (;;) {
if (identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub), w))
break;
if (++m_pub[0] == 0)
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
}
// If we passed PoW then check that the address is valid, otherwise loop
// back around and run the whole process again.
m_computeHash();
const Address addr(m_fp.hash);
if (!addr.isReserved()) {
m_fp.address = addr;
break;
}
}
} catch ( ... ) {}
free(w);
}
break;
default:
return false;
}
return true;
}
bool Identity::locallyValidate() const noexcept
{
try {
if ((m_fp) && ((!Address(m_fp.address).isReserved()))) {
switch (m_type) {
case C25519: {
uint8_t digest[64];
char *const genmem = (char *)malloc(ZT_V0_IDENTITY_GEN_MEMORY);
if (!genmem)
return false;
identityV0ProofOfWorkFrankenhash(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
free(genmem);
return ((Address(digest + 59) == m_fp.address) && (digest[0] < 17));
}
case P384: {
if (Address(m_fp.hash) != m_fp.address)
return false;
uint64_t *const w = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE);
if (!w)
return false;
const bool valid = identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub), w);
free(w);
return valid;
}
}
}
} catch (...) {}
return false;
}
void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
{
if (m_hasPrivate) {
switch (m_type) {
case C25519:
SHA384(h, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
return;
case P384:
SHA384(h, m_pub, sizeof(m_pub), m_priv, sizeof(m_priv));
return;
}
}
Utils::zero< ZT_FINGERPRINT_HASH_SIZE >(h);
}
unsigned int Identity::sign(const void *data, unsigned int len, void *sig, unsigned int siglen) const
{
if (m_hasPrivate) {
switch (m_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(m_priv, m_pub, data, len, sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// SECURITY: signatures also include the public keys to further enforce their coupling.
static_assert(ZT_ECC384_SIGNATURE_HASH_SIZE == ZT_SHA384_DIGEST_SIZE, "weird!");
uint8_t h[ZT_ECC384_SIGNATURE_HASH_SIZE];
SHA384(h, data, len, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
ECC384ECDSASign(m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, h, (uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
bool Identity::verify(const void *data, unsigned int len, const void *sig, unsigned int siglen) const
{
switch (m_type) {
case C25519:
return C25519::verify(m_pub, data, len, sig, siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[ZT_ECC384_SIGNATURE_HASH_SIZE];
SHA384(h, data, len, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
return ECC384ECDSAVerify(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (const uint8_t *)sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id, uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
{
uint8_t rawkey[128], h[64];
if (likely(m_hasPrivate)) {
if ((m_type == C25519) || (id.m_type == C25519)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(m_priv, id.m_pub, rawkey);
SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy< ZT_SYMMETRIC_KEY_SIZE >(key, h);
return true;
} else if ((m_type == P384) && (id.m_type == P384)) {
// For another P384 identity we execute DH agreement with BOTH keys and then
// hash the results together. For those (cough FIPS cough) who only consider
// P384 to be kosher, the C25519 secret can be considered a "salt"
// or something. For those who don't trust P384 this means the privacy of
// your traffic is also protected by C25519.
C25519::agree(m_priv, id.m_pub, rawkey);
ECC384ECDH(id.m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
SHA384(key, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
return true;
}
}
return false;
}
char *Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
Address(m_fp.address).toString(p);
p += 10;
*(p++) = ':';
switch (m_type) {
case C25519: {
*(p++) = '0';
*(p++) = ':';
Utils::hex(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PUBLIC_KEY_SIZE * 2;
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
Utils::hex(m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PRIVATE_KEY_SIZE * 2;
}
*p = (char)0;
return buf;
}
case P384: {
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e(m_pub, sizeof(m_pub), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
el = Utils::b32e(m_priv, sizeof(m_priv), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
return buf;
}
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
memoryZero(this);
if ((!str) || (!Utils::scopy(tmp, sizeof(tmp), str)))
return false;
int fno = 0;
char *saveptr = nullptr;
for (char *f = Utils::stok(tmp, ":", &saveptr); ((f) && (fno < 4)); f = Utils::stok(nullptr, ":", &saveptr)) {
switch (fno++) {
case 0:
m_fp.address = Utils::hexStrToU64(f) & ZT_ADDRESS_MASK;
if (Address(m_fp.address).isReserved())
return false;
break;
case 1:
if ((f[0] == '0') && (!f[1])) {
m_type = C25519;
} else if ((f[0] == '1') && (!f[1])) {
m_type = P384;
} else {
return false;
}
break;
case 2:
switch (m_type) {
case C25519:
if (Utils::unhex(f, strlen(f), m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE)
return false;
break;
case P384:
if (Utils::b32d(f, m_pub, sizeof(m_pub)) != sizeof(m_pub))
return false;
break;
}
break;
case 3:
if (strlen(f) > 1) {
switch (m_type) {
case C25519:
if (Utils::unhex(f, strlen(f), m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
return false;
} else {
m_hasPrivate = true;
}
break;
case P384:
if (Utils::b32d(f, m_priv, sizeof(m_priv)) != sizeof(m_priv)) {
return false;
} else {
m_hasPrivate = true;
}
break;
}
break;
}
}
}
if (fno < 3)
return false;
m_computeHash();
return !((m_type == P384) && (Address(m_fp.hash) != m_fp.address));
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX], const bool includePrivate) const noexcept
{
Address(m_fp.address).copyTo(data);
switch (m_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
Utils::copy< ZT_C25519_COMBINED_PUBLIC_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1, m_pub);
if ((includePrivate) && (m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
Utils::copy< ZT_C25519_COMBINED_PRIVATE_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1, m_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1;
}
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
Utils::copy< ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1, m_pub);
if ((includePrivate) && (m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
Utils::copy< ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1, m_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
}
return -1;
}
int Identity::unmarshal(const uint8_t *data, const int len) noexcept
{
memoryZero(this);
if (len < (1 + ZT_ADDRESS_LENGTH))
return -1;
m_fp.address = Address(data);
unsigned int privlen;
switch ((m_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy< ZT_C25519_COMBINED_PUBLIC_KEY_SIZE >(m_pub, data + ZT_ADDRESS_LENGTH + 1);
m_computeHash();
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE];
if (privlen == ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE))
return -1;
m_hasPrivate = true;
Utils::copy< ZT_C25519_COMBINED_PRIVATE_KEY_SIZE >(m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
m_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1;
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy< ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE >(m_pub, data + ZT_ADDRESS_LENGTH + 1);
m_computeHash(); // this sets the address for P384
if (Address(m_fp.hash) != m_fp.address) // this sanity check is possible with V1 identities
return -1;
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
return -1;
m_hasPrivate = true;
Utils::copy< ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE >(&m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
m_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
break;
}
return -1;
}
void Identity::m_computeHash()
{
switch (m_type) {
default:
m_fp.zero();
break;
case C25519:
SHA384(m_fp.hash, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
break;
case P384:
SHA384(m_fp.hash, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
break;
}
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_IdentityType type)
{
if ((type != ZT_IDENTITY_TYPE_C25519) && (type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id, const void *data, unsigned int len, void *signature, unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data, len, signature, signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id, const void *data, unsigned int len, const void *signature, unsigned int sigLen)
{
if ((!id) || (!signature) || (!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data, len, signature, sigLen) ? 1 : 0;
}
enum ZT_IdentityType ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_IdentityType)0;
return (enum ZT_IdentityType)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id, char *buf, int capacity, int includePrivate)
{
if ((!id) || (!buf) || (capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0, buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address();
}
const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id)
{
if (!id)
return nullptr;
return &(reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint());
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}