mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-04-25 16:36:54 +02:00
1124 lines
33 KiB
C++
1124 lines
33 KiB
C++
/*
|
|
* Copyright (c)2013-2020 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2024-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#include "Constants.hpp"
|
|
#include "SharedPtr.hpp"
|
|
#include "Node.hpp"
|
|
#include "NetworkController.hpp"
|
|
#include "Topology.hpp"
|
|
#include "Address.hpp"
|
|
#include "Identity.hpp"
|
|
#include "SelfAwareness.hpp"
|
|
#include "Network.hpp"
|
|
#include "Trace.hpp"
|
|
#include "Locator.hpp"
|
|
#include "Expect.hpp"
|
|
#include "VL1.hpp"
|
|
#include "VL2.hpp"
|
|
#include "Buf.hpp"
|
|
|
|
namespace ZeroTier {
|
|
|
|
namespace {
|
|
|
|
// Structure containing all the core objects for a ZeroTier node to reduce memory allocations.
|
|
struct _NodeObjects
|
|
{
|
|
ZT_INLINE _NodeObjects(RuntimeEnvironment *const RR, void *const tPtr, const int64_t now) :
|
|
t(RR),
|
|
expect(),
|
|
vl2(RR),
|
|
vl1(RR),
|
|
sa(RR),
|
|
topology(RR, tPtr, now)
|
|
{
|
|
RR->t = &t;
|
|
RR->expect = &expect;
|
|
RR->vl2 = &vl2;
|
|
RR->vl1 = &vl1;
|
|
RR->sa = &sa;
|
|
RR->topology = &topology;
|
|
}
|
|
|
|
Trace t;
|
|
Expect expect;
|
|
VL2 vl2;
|
|
VL1 vl1;
|
|
SelfAwareness sa;
|
|
Topology topology;
|
|
};
|
|
|
|
struct _sortPeerPtrsByAddress
|
|
{
|
|
ZT_INLINE bool operator()(const SharedPtr< Peer > &a, const SharedPtr< Peer > &b) const
|
|
{ return (a->address() < b->address()); }
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
Node::Node(
|
|
void *uPtr,
|
|
void *tPtr,
|
|
const struct ZT_Node_Callbacks *callbacks,
|
|
int64_t now) :
|
|
m_RR(this),
|
|
RR(&m_RR),
|
|
m_objects(nullptr),
|
|
m_cb(*callbacks),
|
|
m_uPtr(uPtr),
|
|
m_networks(),
|
|
m_lastPeerPulse(0),
|
|
m_lastHousekeepingRun(0),
|
|
m_lastNetworkHousekeepingRun(0),
|
|
m_now(now),
|
|
m_online(false)
|
|
{
|
|
ZT_SPEW("starting up...");
|
|
|
|
// Load this node's identity.
|
|
uint64_t idtmp[2];
|
|
idtmp[0] = 0;
|
|
idtmp[1] = 0;
|
|
Vector< uint8_t > data(stateObjectGet(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp));
|
|
bool haveIdentity = false;
|
|
if (!data.empty()) {
|
|
data.push_back(0); // zero-terminate string
|
|
if (RR->identity.fromString((const char *)data.data())) {
|
|
RR->identity.toString(false, RR->publicIdentityStr);
|
|
RR->identity.toString(true, RR->secretIdentityStr);
|
|
haveIdentity = true;
|
|
ZT_SPEW("loaded identity %s", RR->identity.toString().c_str());
|
|
}
|
|
}
|
|
|
|
// Generate a new identity if we don't have one.
|
|
if (!haveIdentity) {
|
|
RR->identity.generate(Identity::C25519);
|
|
RR->identity.toString(false, RR->publicIdentityStr);
|
|
RR->identity.toString(true, RR->secretIdentityStr);
|
|
idtmp[0] = RR->identity.address();
|
|
idtmp[1] = 0;
|
|
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, RR->secretIdentityStr, (unsigned int)strlen(RR->secretIdentityStr));
|
|
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
|
|
ZT_SPEW("no pre-existing identity found, created %s", RR->identity.toString().c_str());
|
|
} else {
|
|
idtmp[0] = RR->identity.address();
|
|
idtmp[1] = 0;
|
|
data = stateObjectGet(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp);
|
|
if ((data.empty()) || (memcmp(data.data(), RR->publicIdentityStr, strlen(RR->publicIdentityStr)) != 0))
|
|
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
|
|
}
|
|
|
|
// Create a secret key for encrypting local data at rest.
|
|
uint8_t tmph[ZT_SHA384_DIGEST_SIZE];
|
|
RR->identity.hashWithPrivate(tmph);
|
|
SHA384(tmph, tmph, ZT_SHA384_DIGEST_SIZE);
|
|
RR->localCacheSymmetric.init(tmph);
|
|
Utils::burn(tmph, ZT_SHA384_DIGEST_SIZE);
|
|
|
|
// Generate a random sort order for privileged ports for use in NAT-t algorithms.
|
|
for (unsigned int i = 0; i < 1023; ++i)
|
|
RR->randomPrivilegedPortOrder[i] = (uint16_t)(i + 1);
|
|
for (unsigned int i = 0; i < 512; ++i) {
|
|
uint64_t rn = Utils::random();
|
|
const unsigned int a = (unsigned int)rn % 1023;
|
|
const unsigned int b = (unsigned int)(rn >> 32U) % 1023;
|
|
if (a != b) {
|
|
const uint16_t tmp = RR->randomPrivilegedPortOrder[a];
|
|
RR->randomPrivilegedPortOrder[a] = RR->randomPrivilegedPortOrder[b];
|
|
RR->randomPrivilegedPortOrder[b] = tmp;
|
|
}
|
|
}
|
|
|
|
// This constructs all the components of the ZeroTier core within a single contiguous memory container,
|
|
// which reduces memory fragmentation and may improve cache locality.
|
|
ZT_SPEW("initializing subsystem objects...");
|
|
m_objects = new _NodeObjects(RR, tPtr, now);
|
|
ZT_SPEW("node initialized!");
|
|
|
|
postEvent(tPtr, ZT_EVENT_UP);
|
|
}
|
|
|
|
Node::~Node()
|
|
{
|
|
ZT_SPEW("node destructor run");
|
|
m_networks_l.lock();
|
|
m_networks_l.unlock();
|
|
m_networks.clear();
|
|
m_networks_l.lock();
|
|
m_networks_l.unlock();
|
|
|
|
if (m_objects)
|
|
delete (_NodeObjects *)m_objects;
|
|
|
|
// Let go of cached Buf objects. If other nodes happen to be running in this
|
|
// same process space new Bufs will be allocated as needed, but this is almost
|
|
// never the case. Calling this here saves RAM if we are running inside something
|
|
// that wants to keep running after tearing down its ZeroTier core instance.
|
|
Buf::freePool();
|
|
}
|
|
|
|
void Node::shutdown(void *tPtr)
|
|
{
|
|
ZT_SPEW("explicit shutdown() called");
|
|
postEvent(tPtr, ZT_EVENT_DOWN);
|
|
if (RR->topology)
|
|
RR->topology->saveAll(tPtr);
|
|
}
|
|
|
|
ZT_ResultCode Node::processWirePacket(
|
|
void *tPtr,
|
|
int64_t now,
|
|
int64_t localSocket,
|
|
const struct sockaddr_storage *remoteAddress,
|
|
SharedPtr< Buf > &packetData,
|
|
unsigned int packetLength,
|
|
volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
m_now = now;
|
|
RR->vl1->onRemotePacket(tPtr, localSocket, (remoteAddress) ? InetAddress::NIL : *asInetAddress(remoteAddress), packetData, packetLength);
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
ZT_ResultCode Node::processVirtualNetworkFrame(
|
|
void *tPtr,
|
|
int64_t now,
|
|
uint64_t nwid,
|
|
uint64_t sourceMac,
|
|
uint64_t destMac,
|
|
unsigned int etherType,
|
|
unsigned int vlanId,
|
|
SharedPtr< Buf > &frameData,
|
|
unsigned int frameLength,
|
|
volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
m_now = now;
|
|
SharedPtr< Network > nw(this->network(nwid));
|
|
if (nw) {
|
|
RR->vl2->onLocalEthernet(tPtr, nw, MAC(sourceMac), MAC(destMac), etherType, vlanId, frameData, frameLength);
|
|
return ZT_RESULT_OK;
|
|
} else {
|
|
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
|
|
}
|
|
}
|
|
|
|
ZT_ResultCode Node::processHTTPResponse(
|
|
void *tptr,
|
|
int64_t now,
|
|
void *requestId,
|
|
int responseCode,
|
|
const char **headerNames,
|
|
const char **headerValues,
|
|
const void *body,
|
|
unsigned int bodySize,
|
|
unsigned int flags)
|
|
{
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
ZT_ResultCode Node::processBackgroundTasks(
|
|
void *tPtr,
|
|
int64_t now,
|
|
volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
m_now = now;
|
|
Mutex::Lock bl(m_backgroundTasksLock);
|
|
|
|
try {
|
|
// Call peer pulse() method of all peers every ZT_PEER_PULSE_INTERVAL.
|
|
if ((now - m_lastPeerPulse) >= ZT_PEER_PULSE_INTERVAL) {
|
|
m_lastPeerPulse = now;
|
|
ZT_SPEW("running pulse() on each peer...");
|
|
try {
|
|
Vector< SharedPtr< Peer > > allPeers, rootPeers;
|
|
RR->topology->getAllPeers(allPeers, rootPeers);
|
|
|
|
bool online = false;
|
|
for (Vector< SharedPtr< Peer > >::iterator p(allPeers.begin()); p != allPeers.end(); ++p) {
|
|
const bool isRoot = std::find(rootPeers.begin(), rootPeers.end(), *p) != rootPeers.end();
|
|
(*p)->pulse(tPtr, now, isRoot);
|
|
online |= ((isRoot || rootPeers.empty()) && (*p)->directlyConnected(now));
|
|
}
|
|
|
|
RR->topology->rankRoots();
|
|
|
|
if (m_online.exchange(online) != online)
|
|
postEvent(tPtr, online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
|
|
} catch (...) {
|
|
return ZT_RESULT_FATAL_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
// Perform network housekeeping and possibly request new certs and configs every ZT_NETWORK_HOUSEKEEPING_PERIOD.
|
|
if ((now - m_lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) {
|
|
m_lastHousekeepingRun = now;
|
|
ZT_SPEW("running networking housekeeping...");
|
|
RWMutex::RLock l(m_networks_l);
|
|
for (Map< uint64_t, SharedPtr< Network > >::const_iterator i(m_networks.begin()); i != m_networks.end(); ++i) {
|
|
i->second->doPeriodicTasks(tPtr, now);
|
|
}
|
|
}
|
|
|
|
// Clean up other stuff every ZT_HOUSEKEEPING_PERIOD.
|
|
if ((now - m_lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
|
|
m_lastHousekeepingRun = now;
|
|
ZT_SPEW("running housekeeping...");
|
|
|
|
// Clean up any old local controller auth memoizations. This is an
|
|
// optimization for network controllers to know whether to accept
|
|
// or trust nodes without doing an extra cert check.
|
|
m_localControllerAuthorizations_l.lock();
|
|
for (Map< p_LocalControllerAuth, int64_t >::iterator i(m_localControllerAuthorizations.begin()); i != m_localControllerAuthorizations.end();) { // NOLINT(hicpp-use-auto,modernize-use-auto)
|
|
if ((i->second - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
|
|
m_localControllerAuthorizations.erase(i++);
|
|
else ++i;
|
|
}
|
|
m_localControllerAuthorizations_l.unlock();
|
|
|
|
RR->topology->doPeriodicTasks(tPtr, now);
|
|
RR->sa->clean(now);
|
|
}
|
|
|
|
*nextBackgroundTaskDeadline = now + ZT_TIMER_TASK_INTERVAL;
|
|
} catch (...) {
|
|
return ZT_RESULT_FATAL_ERROR_INTERNAL;
|
|
}
|
|
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
ZT_ResultCode Node::join(
|
|
uint64_t nwid,
|
|
const ZT_Fingerprint *controllerFingerprint,
|
|
void *uptr,
|
|
void *tptr)
|
|
{
|
|
Fingerprint fp;
|
|
if (controllerFingerprint) {
|
|
fp = *controllerFingerprint;
|
|
ZT_SPEW("joining network %.16llx with fingerprint %s", nwid, fp.toString().c_str());
|
|
} else {
|
|
ZT_SPEW("joining network %.16llx", nwid);
|
|
}
|
|
|
|
RWMutex::Lock l(m_networks_l);
|
|
SharedPtr< Network > &nw = m_networks[nwid];
|
|
if (nw)
|
|
return ZT_RESULT_OK;
|
|
nw.set(new Network(RR, tptr, nwid, fp, uptr, nullptr));
|
|
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
ZT_ResultCode Node::leave(
|
|
uint64_t nwid,
|
|
void **uptr,
|
|
void *tptr)
|
|
{
|
|
ZT_SPEW("leaving network %.16llx", nwid);
|
|
ZT_VirtualNetworkConfig ctmp;
|
|
|
|
m_networks_l.lock();
|
|
Map< uint64_t, SharedPtr< Network > >::iterator nwi(m_networks.find(nwid)); // NOLINT(hicpp-use-auto,modernize-use-auto)
|
|
if (nwi == m_networks.end()) {
|
|
m_networks_l.unlock();
|
|
return ZT_RESULT_OK;
|
|
}
|
|
SharedPtr< Network > nw(nwi->second);
|
|
m_networks.erase(nwi);
|
|
m_networks_l.unlock();
|
|
|
|
if (uptr)
|
|
*uptr = *nw->userPtr();
|
|
nw->externalConfig(&ctmp);
|
|
|
|
RR->node->configureVirtualNetworkPort(tptr, nwid, uptr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp);
|
|
|
|
nw->destroy();
|
|
nw.zero();
|
|
|
|
uint64_t tmp[2];
|
|
tmp[0] = nwid;
|
|
tmp[1] = 0;
|
|
RR->node->stateObjectDelete(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp);
|
|
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
ZT_ResultCode Node::multicastSubscribe(
|
|
void *tPtr,
|
|
uint64_t nwid,
|
|
uint64_t multicastGroup,
|
|
unsigned long multicastAdi)
|
|
{
|
|
ZT_SPEW("multicast subscribe to %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
|
|
const SharedPtr< Network > nw(this->network(nwid));
|
|
if (nw) {
|
|
nw->multicastSubscribe(tPtr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
|
|
return ZT_RESULT_OK;
|
|
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
|
|
}
|
|
|
|
ZT_ResultCode Node::multicastUnsubscribe(
|
|
uint64_t nwid,
|
|
uint64_t multicastGroup,
|
|
unsigned long multicastAdi)
|
|
{
|
|
ZT_SPEW("multicast unsubscribe from %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
|
|
const SharedPtr< Network > nw(this->network(nwid));
|
|
if (nw) {
|
|
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
|
|
return ZT_RESULT_OK;
|
|
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
|
|
}
|
|
|
|
ZT_ResultCode Node::addRoot(
|
|
void *tPtr,
|
|
const ZT_Identity *id)
|
|
{
|
|
return (RR->topology->addRoot(tPtr, *reinterpret_cast<const Identity *>(id))) ? ZT_RESULT_OK : ZT_RESULT_ERROR_BAD_PARAMETER;
|
|
}
|
|
|
|
ZT_ResultCode Node::removeRoot(
|
|
void *tPtr,
|
|
const uint64_t address)
|
|
{
|
|
RR->topology->removeRoot(tPtr, Address(address));
|
|
return ZT_RESULT_OK;
|
|
}
|
|
|
|
uint64_t Node::address() const
|
|
{
|
|
return RR->identity.address().toInt();
|
|
}
|
|
|
|
void Node::status(ZT_NodeStatus *status) const
|
|
{
|
|
status->address = RR->identity.address().toInt();
|
|
status->identity = reinterpret_cast<const ZT_Identity *>(&RR->identity);
|
|
status->publicIdentity = RR->publicIdentityStr;
|
|
status->secretIdentity = RR->secretIdentityStr;
|
|
status->online = m_online ? 1 : 0;
|
|
}
|
|
|
|
ZT_PeerList *Node::peers() const
|
|
{
|
|
Vector< SharedPtr< Peer > > peers;
|
|
RR->topology->getAllPeers(peers);
|
|
std::sort(peers.begin(), peers.end(), _sortPeerPtrsByAddress());
|
|
|
|
const unsigned int bufSize =
|
|
sizeof(ZT_PeerList) +
|
|
(sizeof(ZT_Peer) * peers.size()) +
|
|
((sizeof(ZT_Path) * ZT_MAX_PEER_NETWORK_PATHS) * peers.size()) +
|
|
(sizeof(Identity) * peers.size()) +
|
|
(ZT_LOCATOR_MARSHAL_SIZE_MAX * peers.size());
|
|
char *buf = (char *)malloc(bufSize);
|
|
if (!buf)
|
|
return nullptr;
|
|
Utils::zero(buf, bufSize);
|
|
ZT_PeerList *pl = reinterpret_cast<ZT_PeerList *>(buf);
|
|
buf += sizeof(ZT_PeerList);
|
|
pl->peers = reinterpret_cast<ZT_Peer *>(buf);
|
|
buf += sizeof(ZT_Peer) * peers.size();
|
|
ZT_Path *peerPath = reinterpret_cast<ZT_Path *>(buf);
|
|
buf += (sizeof(ZT_Path) * ZT_MAX_PEER_NETWORK_PATHS) * peers.size();
|
|
Identity *identities = reinterpret_cast<Identity *>(buf);
|
|
buf += sizeof(Identity) * peers.size();
|
|
uint8_t *locatorBuf = reinterpret_cast<uint8_t *>(buf);
|
|
|
|
const int64_t now = m_now;
|
|
|
|
pl->peerCount = 0;
|
|
for (Vector< SharedPtr< Peer > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) {
|
|
ZT_Peer *const p = pl->peers + pl->peerCount;
|
|
|
|
p->address = (*pi)->address().toInt();
|
|
identities[pl->peerCount] = (*pi)->identity(); // need to make a copy in case peer gets deleted
|
|
p->identity = identities + pl->peerCount;
|
|
p->fingerprint.address = p->address;
|
|
Utils::copy< ZT_FINGERPRINT_HASH_SIZE >(p->fingerprint.hash, (*pi)->identity().fingerprint().hash);
|
|
if ((*pi)->remoteVersionKnown()) {
|
|
p->versionMajor = (int)(*pi)->remoteVersionMajor();
|
|
p->versionMinor = (int)(*pi)->remoteVersionMinor();
|
|
p->versionRev = (int)(*pi)->remoteVersionRevision();
|
|
} else {
|
|
p->versionMajor = -1;
|
|
p->versionMinor = -1;
|
|
p->versionRev = -1;
|
|
}
|
|
p->latency = (*pi)->latency();
|
|
p->root = RR->topology->isRoot((*pi)->identity()) ? 1 : 0;
|
|
|
|
p->networkCount = 0;
|
|
// TODO: enumerate network memberships
|
|
|
|
Vector< SharedPtr< Path > > paths;
|
|
(*pi)->getAllPaths(paths);
|
|
p->pathCount = (unsigned int)paths.size();
|
|
p->paths = peerPath;
|
|
for (Vector< SharedPtr< Path > >::iterator path(paths.begin()); path != paths.end(); ++path) {
|
|
ZT_Path *const pp = peerPath++;
|
|
pp->endpoint.type = ZT_ENDPOINT_TYPE_IP_UDP; // only type supported right now
|
|
Utils::copy< sizeof(sockaddr_storage) >(&pp->endpoint.value.ss, &((*path)->address().as.ss));
|
|
pp->lastSend = (*path)->lastOut();
|
|
pp->lastReceive = (*path)->lastIn();
|
|
pp->alive = (*path)->alive(now) ? 1 : 0;
|
|
pp->preferred = (p->pathCount == 0) ? 1 : 0;
|
|
}
|
|
|
|
const SharedPtr< const Locator > loc((*pi)->locator());
|
|
if (loc) {
|
|
const int ls = loc->marshal(locatorBuf);
|
|
if (ls > 0) {
|
|
p->locatorSize = (unsigned int)ls;
|
|
p->locator = locatorBuf;
|
|
locatorBuf += ls;
|
|
}
|
|
}
|
|
|
|
++pl->peerCount;
|
|
}
|
|
|
|
return pl;
|
|
}
|
|
|
|
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
|
|
{
|
|
SharedPtr< Network > nw(network(nwid));
|
|
if (nw) {
|
|
ZT_VirtualNetworkConfig *const nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
|
|
nw->externalConfig(nc);
|
|
return nc;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ZT_VirtualNetworkList *Node::networks() const
|
|
{
|
|
RWMutex::RLock l(m_networks_l);
|
|
|
|
char *const buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * m_networks.size()));
|
|
if (!buf)
|
|
return nullptr;
|
|
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf; // NOLINT(modernize-use-auto,hicpp-use-auto)
|
|
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
|
|
|
|
nl->networkCount = 0;
|
|
for (Map< uint64_t, SharedPtr< Network > >::const_iterator i(m_networks.begin()); i != m_networks.end(); ++i) // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
|
|
i->second->externalConfig(&(nl->networks[nl->networkCount++]));
|
|
|
|
return nl;
|
|
}
|
|
|
|
void Node::setNetworkUserPtr(
|
|
uint64_t nwid,
|
|
void *ptr)
|
|
{
|
|
SharedPtr< Network > nw(network(nwid));
|
|
if (nw)
|
|
*(nw->userPtr()) = ptr;
|
|
}
|
|
|
|
void Node::setInterfaceAddresses(
|
|
const ZT_InterfaceAddress *addrs,
|
|
unsigned int addrCount)
|
|
{
|
|
Mutex::Lock _l(m_localInterfaceAddresses_m);
|
|
m_localInterfaceAddresses.clear();
|
|
for (unsigned int i = 0; i < addrCount; ++i) {
|
|
bool dupe = false;
|
|
for (unsigned int j = 0; j < i; ++j) {
|
|
if (*(reinterpret_cast<const InetAddress *>(&addrs[j].address)) == *(reinterpret_cast<const InetAddress *>(&addrs[i].address))) {
|
|
dupe = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!dupe)
|
|
m_localInterfaceAddresses.push_back(addrs[i]);
|
|
}
|
|
}
|
|
|
|
ZT_ResultCode Node::addPeer(
|
|
void *tptr,
|
|
const ZT_Identity *identity)
|
|
{
|
|
if (!identity)
|
|
return ZT_RESULT_ERROR_BAD_PARAMETER;
|
|
SharedPtr< Peer > peer(RR->topology->peer(tptr, reinterpret_cast<const Identity *>(identity)->address()));
|
|
if (!peer) {
|
|
peer.set(new Peer(RR));
|
|
peer->init(*reinterpret_cast<const Identity *>(identity));
|
|
peer = RR->topology->add(tptr, peer);
|
|
}
|
|
return (peer->identity() == *reinterpret_cast<const Identity *>(identity)) ? ZT_RESULT_OK : ZT_RESULT_ERROR_COLLIDING_OBJECT;
|
|
}
|
|
|
|
int Node::tryPeer(
|
|
void *tptr,
|
|
const ZT_Fingerprint *fp,
|
|
const ZT_Endpoint *endpoint,
|
|
int retries)
|
|
{
|
|
if ((!fp) || (!endpoint))
|
|
return 0;
|
|
const SharedPtr< Peer > peer(RR->topology->peer(tptr, fp->address, true));
|
|
if ((peer) && (peer->identity().fingerprint().bestSpecificityEquals(*fp))) {
|
|
peer->contact(tptr, m_now, Endpoint(*endpoint), std::min(retries, 1));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int Node::sendUserMessage(
|
|
void *tptr,
|
|
uint64_t dest,
|
|
uint64_t typeId,
|
|
const void *data,
|
|
unsigned int len)
|
|
{
|
|
try {
|
|
if (RR->identity.address().toInt() != dest) {
|
|
// TODO
|
|
/*
|
|
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
|
|
outp.append(typeId);
|
|
outp.append(data,len);
|
|
outp.compress();
|
|
RR->sw->send(tptr,outp,true);
|
|
*/
|
|
return 1;
|
|
}
|
|
} catch (...) {}
|
|
return 0;
|
|
}
|
|
|
|
void Node::setController(void *networkControllerInstance)
|
|
{
|
|
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
|
|
if (networkControllerInstance)
|
|
RR->localNetworkController->init(RR->identity, this);
|
|
}
|
|
|
|
// Methods used only within the core ----------------------------------------------------------------------------------
|
|
|
|
Vector< uint8_t > Node::stateObjectGet(void *const tPtr, ZT_StateObjectType type, const uint64_t *id)
|
|
{
|
|
Vector< uint8_t > r;
|
|
if (m_cb.stateGetFunction) {
|
|
void *data = nullptr;
|
|
void (*freeFunc)(void *) = nullptr;
|
|
int l = m_cb.stateGetFunction(
|
|
reinterpret_cast<ZT_Node *>(this),
|
|
m_uPtr,
|
|
tPtr,
|
|
type,
|
|
id,
|
|
&data,
|
|
&freeFunc);
|
|
if ((l > 0) && (data) && (freeFunc)) {
|
|
r.assign(reinterpret_cast<const uint8_t *>(data), reinterpret_cast<const uint8_t *>(data) + l);
|
|
freeFunc(data);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr, const Identity &id, const int64_t localSocket, const InetAddress &remoteAddress)
|
|
{
|
|
{
|
|
RWMutex::RLock l(m_networks_l);
|
|
for (Map< uint64_t, SharedPtr< Network > >::iterator i(m_networks.begin()); i != m_networks.end(); ++i) { // NOLINT(hicpp-use-auto,modernize-use-auto,modernize-loop-convert)
|
|
for (unsigned int k = 0, j = i->second->config().staticIpCount; k < j; ++k) {
|
|
if (i->second->config().staticIps[k].containsAddress(remoteAddress))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_cb.pathCheckFunction) {
|
|
return (m_cb.pathCheckFunction(
|
|
reinterpret_cast<ZT_Node *>(this),
|
|
m_uPtr,
|
|
tPtr,
|
|
id.address().toInt(),
|
|
(const ZT_Identity *)&id,
|
|
localSocket,
|
|
reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Node::externalPathLookup(void *tPtr, const Identity &id, int family, InetAddress &addr)
|
|
{
|
|
if (m_cb.pathLookupFunction) {
|
|
return (m_cb.pathLookupFunction(
|
|
reinterpret_cast<ZT_Node *>(this),
|
|
m_uPtr,
|
|
tPtr,
|
|
id.address().toInt(),
|
|
reinterpret_cast<const ZT_Identity *>(&id),
|
|
family,
|
|
reinterpret_cast<sockaddr_storage *>(&addr)) == ZT_RESULT_OK);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Node::localControllerHasAuthorized(const int64_t now, const uint64_t nwid, const Address &addr) const
|
|
{
|
|
m_localControllerAuthorizations_l.lock();
|
|
const int64_t *const at = m_localControllerAuthorizations.get(p_LocalControllerAuth(nwid, addr));
|
|
m_localControllerAuthorizations_l.unlock();
|
|
if (at)
|
|
return ((now - *at) < (ZT_NETWORK_AUTOCONF_DELAY * 3));
|
|
return false;
|
|
}
|
|
|
|
// Implementation of NetworkController::Sender ------------------------------------------------------------------------
|
|
|
|
void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address &destination, const NetworkConfig &nc, bool sendLegacyFormatConfig)
|
|
{
|
|
m_localControllerAuthorizations_l.lock();
|
|
m_localControllerAuthorizations[p_LocalControllerAuth(nwid, destination)] = now();
|
|
m_localControllerAuthorizations_l.unlock();
|
|
|
|
if (destination == RR->identity.address()) {
|
|
SharedPtr< Network > n(network(nwid));
|
|
if (!n)
|
|
return;
|
|
n->setConfiguration((void *)0, nc, true);
|
|
} else {
|
|
Dictionary dconf;
|
|
if (nc.toDictionary(dconf)) {
|
|
uint64_t configUpdateId = Utils::random();
|
|
if (!configUpdateId)
|
|
++configUpdateId;
|
|
|
|
Vector< uint8_t > ddata;
|
|
dconf.encode(ddata);
|
|
// TODO
|
|
/*
|
|
unsigned int chunkIndex = 0;
|
|
while (chunkIndex < totalSize) {
|
|
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
|
|
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
|
|
if (requestPacketId) {
|
|
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
|
|
outp.append(requestPacketId);
|
|
}
|
|
|
|
const unsigned int sigStart = outp.size();
|
|
outp.append(nwid);
|
|
outp.append((uint16_t)chunkLen);
|
|
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
|
|
|
|
outp.append((uint8_t)0); // no flags
|
|
outp.append((uint64_t)configUpdateId);
|
|
outp.append((uint32_t)totalSize);
|
|
outp.append((uint32_t)chunkIndex);
|
|
|
|
uint8_t sig[256];
|
|
const unsigned int siglen = RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig));
|
|
outp.append((uint8_t)1);
|
|
outp.append((uint16_t)siglen);
|
|
outp.append(sig,siglen);
|
|
|
|
outp.compress();
|
|
RR->sw->send((void *)0,outp,true);
|
|
chunkIndex += chunkLen;
|
|
}
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
void Node::ncSendRevocation(const Address &destination, const RevocationCredential &rev)
|
|
{
|
|
if (destination == RR->identity.address()) {
|
|
SharedPtr< Network > n(network(rev.networkId()));
|
|
if (!n) return;
|
|
n->addCredential(nullptr, RR->identity, rev);
|
|
} else {
|
|
// TODO
|
|
/*
|
|
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
|
|
outp.append((uint8_t)0x00);
|
|
outp.append((uint16_t)0);
|
|
outp.append((uint16_t)0);
|
|
outp.append((uint16_t)1);
|
|
rev.serialize(outp);
|
|
outp.append((uint16_t)0);
|
|
RR->sw->send((void *)0,outp,true);
|
|
*/
|
|
}
|
|
}
|
|
|
|
void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address &destination, NetworkController::ErrorCode errorCode)
|
|
{
|
|
if (destination == RR->identity.address()) {
|
|
SharedPtr< Network > n(network(nwid));
|
|
if (!n) return;
|
|
switch (errorCode) {
|
|
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
|
|
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
|
|
n->setNotFound();
|
|
break;
|
|
case NetworkController::NC_ERROR_ACCESS_DENIED:
|
|
n->setAccessDenied();
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} else if (requestPacketId) {
|
|
// TODO
|
|
/*
|
|
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
|
|
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
|
|
outp.append(requestPacketId);
|
|
switch(errorCode) {
|
|
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
|
|
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
|
|
default:
|
|
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
|
|
break;
|
|
case NetworkController::NC_ERROR_ACCESS_DENIED:
|
|
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
|
|
break;
|
|
}
|
|
outp.append(nwid);
|
|
RR->sw->send((void *)0,outp,true);
|
|
*/
|
|
} // else we can't send an ERROR() in response to nothing, so discard
|
|
}
|
|
|
|
} // namespace ZeroTier
|
|
|
|
// C API --------------------------------------------------------------------------------------------------------------
|
|
|
|
extern "C" {
|
|
|
|
// These macros make the idiom of passing buffers to outside code via the API work properly even
|
|
// if the first address of Buf does not overlap with its data field, since the C++ standard does
|
|
// not absolutely guarantee this.
|
|
#define _ZT_PTRTOBUF(p) ((ZeroTier::Buf *)( ((uintptr_t)(p)) - ((uintptr_t)&(((ZeroTier::Buf *)0)->unsafeData[0])) ))
|
|
#define _ZT_BUFTOPTR(b) ((void *)(&((b)->unsafeData[0])))
|
|
|
|
void *ZT_getBuffer()
|
|
{
|
|
// When external code requests a Buf, grab one from the pool (or freshly allocated)
|
|
// and return it with its reference count left at zero. It's the responsibility of
|
|
// external code to bring it back via freeBuffer() or one of the processX() calls.
|
|
// When this occurs it's either sent back to the pool with Buf's delete operator or
|
|
// wrapped in a SharedPtr<> to be passed into the core.
|
|
try {
|
|
return _ZT_BUFTOPTR(new ZeroTier::Buf());
|
|
} catch (...) {
|
|
return nullptr; // can only happen on out of memory condition
|
|
}
|
|
}
|
|
|
|
void ZT_freeBuffer(void *b)
|
|
{
|
|
if (b)
|
|
delete _ZT_PTRTOBUF(b);
|
|
}
|
|
|
|
void ZT_freeQueryResult(void *qr)
|
|
{
|
|
if (qr)
|
|
free(qr);
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_new(ZT_Node **node, void *uptr, void *tptr, const struct ZT_Node_Callbacks *callbacks, int64_t now)
|
|
{
|
|
*node = (ZT_Node *)0;
|
|
try {
|
|
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr, tptr, callbacks, now));
|
|
return ZT_RESULT_OK;
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (std::runtime_error &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
void ZT_Node_delete(ZT_Node *node, void *tPtr)
|
|
{
|
|
try {
|
|
reinterpret_cast<ZeroTier::Node *>(node)->shutdown(tPtr);
|
|
delete (reinterpret_cast<ZeroTier::Node *>(node));
|
|
} catch (...) {}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_processWirePacket(
|
|
ZT_Node *node,
|
|
void *tptr,
|
|
int64_t now,
|
|
int64_t localSocket,
|
|
const struct sockaddr_storage *remoteAddress,
|
|
const void *packetData,
|
|
unsigned int packetLength,
|
|
int isZtBuffer,
|
|
volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
try {
|
|
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(packetData) : new ZeroTier::Buf(packetData, packetLength & ZT_BUF_MEM_MASK));
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, buf, packetLength, nextBackgroundTaskDeadline);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
// "OK" since invalid packets are simply dropped, but the system is still up.
|
|
// We should never make it here, but if we did that would be the interpretation.
|
|
return ZT_RESULT_OK;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
|
|
ZT_Node *node,
|
|
void *tptr,
|
|
int64_t now,
|
|
uint64_t nwid,
|
|
uint64_t sourceMac,
|
|
uint64_t destMac,
|
|
unsigned int etherType,
|
|
unsigned int vlanId,
|
|
const void *frameData,
|
|
unsigned int frameLength,
|
|
int isZtBuffer,
|
|
volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
try {
|
|
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(frameData) : new ZeroTier::Buf(frameData, frameLength & ZT_BUF_MEM_MASK));
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, buf, frameLength, nextBackgroundTaskDeadline);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_processHTTPResponse(
|
|
ZT_Node *node,
|
|
void *tptr,
|
|
int64_t now,
|
|
void *requestId,
|
|
int responseCode,
|
|
const char **headerNames,
|
|
const char **headerValues,
|
|
const void *body,
|
|
unsigned int bodySize,
|
|
unsigned int flags)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->processHTTPResponse(tptr, now, requestId, responseCode, headerNames, headerValues, body, bodySize, flags);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node, void *tptr, int64_t now, volatile int64_t *nextBackgroundTaskDeadline)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_join(ZT_Node *node, uint64_t nwid, const ZT_Fingerprint *controllerFingerprint, void *uptr, void *tptr)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid, controllerFingerprint, uptr, tptr);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node, uint64_t nwid, void **uptr, void *tptr)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid, uptr, tptr);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node, void *tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_addRoot(ZT_Node *node, void *tptr, const ZT_Identity *id)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->addRoot(tptr, id);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_removeRoot(ZT_Node *node, void *tptr, const uint64_t address)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->removeRoot(tptr, address);
|
|
} catch (std::bad_alloc &exc) {
|
|
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
uint64_t ZT_Node_address(ZT_Node *node)
|
|
{
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->address();
|
|
}
|
|
|
|
const ZT_Identity *ZT_Node_identity(ZT_Node *node)
|
|
{
|
|
return (const ZT_Identity *)(&(reinterpret_cast<ZeroTier::Node *>(node)->identity()));
|
|
}
|
|
|
|
void ZT_Node_status(ZT_Node *node, ZT_NodeStatus *status)
|
|
{
|
|
try {
|
|
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
|
|
} catch (...) {}
|
|
}
|
|
|
|
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
|
|
} catch (...) {
|
|
return (ZT_PeerList *)0;
|
|
}
|
|
}
|
|
|
|
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node, uint64_t nwid)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
|
|
} catch (...) {
|
|
return (ZT_VirtualNetworkConfig *)0;
|
|
}
|
|
}
|
|
|
|
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
|
|
} catch (...) {
|
|
return (ZT_VirtualNetworkList *)0;
|
|
}
|
|
}
|
|
|
|
int ZT_Node_tryPeer(
|
|
ZT_Node *node,
|
|
void *tptr,
|
|
const ZT_Fingerprint *fp,
|
|
const ZT_Endpoint *endpoint,
|
|
int retries)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->tryPeer(tptr, fp, endpoint, retries);
|
|
} catch (...) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void ZT_Node_setNetworkUserPtr(ZT_Node *node, uint64_t nwid, void *ptr)
|
|
{
|
|
try {
|
|
reinterpret_cast<ZeroTier::Node *>(node)->setNetworkUserPtr(nwid, ptr);
|
|
} catch (...) {}
|
|
}
|
|
|
|
void ZT_Node_setInterfaceAddresses(ZT_Node *node, const ZT_InterfaceAddress *addrs, unsigned int addrCount)
|
|
{
|
|
try {
|
|
reinterpret_cast<ZeroTier::Node *>(node)->setInterfaceAddresses(addrs, addrCount);
|
|
} catch (...) {}
|
|
}
|
|
|
|
enum ZT_ResultCode ZT_Node_addPeer(
|
|
ZT_Node *node,
|
|
void *tptr,
|
|
const ZT_Identity *id)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->addPeer(tptr, id);
|
|
} catch (...) {
|
|
return ZT_RESULT_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
int ZT_Node_sendUserMessage(ZT_Node *node, void *tptr, uint64_t dest, uint64_t typeId, const void *data, unsigned int len)
|
|
{
|
|
try {
|
|
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr, dest, typeId, data, len);
|
|
} catch (...) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void ZT_Node_setController(ZT_Node *node, void *networkControllerInstance)
|
|
{
|
|
try {
|
|
reinterpret_cast<ZeroTier::Node *>(node)->setController(networkControllerInstance);
|
|
} catch (...) {}
|
|
}
|
|
|
|
void ZT_version(int *major, int *minor, int *revision, int *build)
|
|
{
|
|
if (major)
|
|
*major = ZEROTIER_VERSION_MAJOR;
|
|
if (minor)
|
|
*minor = ZEROTIER_VERSION_MINOR;
|
|
if (revision)
|
|
*revision = ZEROTIER_VERSION_REVISION;
|
|
if (build)
|
|
*build = ZEROTIER_VERSION_BUILD;
|
|
}
|
|
|
|
} // extern "C"
|