mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-04-25 16:36:54 +02:00
482 lines
17 KiB
C++
482 lines
17 KiB
C++
/*
|
|
* Copyright (c)2013-2020 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2024-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#include "Topology.hpp"
|
|
|
|
namespace ZeroTier {
|
|
|
|
static const SharedPtr< const Certificate > s_nullCert;
|
|
|
|
Topology::Topology(const RuntimeEnvironment *renv, void *tPtr, const int64_t now) :
|
|
RR(renv)
|
|
{
|
|
char tmp[256];
|
|
Vector< uint8_t > trustData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256));
|
|
|
|
Dictionary d;
|
|
if (trustData.empty() || (!d.decode(trustData.data(), (unsigned int)trustData.size()))) {
|
|
// TODO: import default certificates including default root set
|
|
} else {
|
|
const unsigned long certCount = (unsigned long)d.getUI("c$");
|
|
for (unsigned long idx = 0; idx < certCount; ++idx) {
|
|
uint64_t id[6];
|
|
const Vector< uint8_t > &serialNo = d[Dictionary::arraySubscript(tmp, "c$.s", idx)];
|
|
if (serialNo.size() == ZT_SHA384_DIGEST_SIZE) {
|
|
Utils::copy< 48 >(id, serialNo.data());
|
|
Certificate cert;
|
|
if (cert.decode(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_CERT, id)))
|
|
addCertificate(tPtr, cert, now, (unsigned int)d.getUI(Dictionary::arraySubscript(tmp, "c$.lt", idx)), false, false, false);
|
|
}
|
|
}
|
|
|
|
const unsigned long localRootCount = (unsigned long)d.getUI("lr$");
|
|
for (unsigned long idx = 0; idx < localRootCount; ++idx) {
|
|
Identity lr;
|
|
if (d.getO(Dictionary::arraySubscript(tmp, "lr$.i", idx), lr)) {
|
|
if (lr)
|
|
m_roots[lr].insert(s_nullCert);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_cleanCertificates_l_certs(now);
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
}
|
|
|
|
SharedPtr< Peer > Topology::add(void *tPtr, const SharedPtr< Peer > &peer)
|
|
{
|
|
RWMutex::Lock _l(m_peers_l);
|
|
SharedPtr< Peer > &hp = m_peers[peer->address()];
|
|
if (hp)
|
|
return hp;
|
|
m_loadCached(tPtr, peer->address(), hp);
|
|
if (hp)
|
|
return hp;
|
|
hp = peer;
|
|
return peer;
|
|
}
|
|
|
|
SharedPtr< Peer > Topology::addRoot(void *const tPtr, const Identity &id)
|
|
{
|
|
if ((id != RR->identity) && id.locallyValidate()) {
|
|
RWMutex::Lock l1(m_roots_l);
|
|
|
|
// A null pointer in the set of certificates specifying a root indicates that
|
|
// the root has been directly added.
|
|
m_roots[id].insert(s_nullCert);
|
|
|
|
{
|
|
Mutex::Lock certsLock(m_certs_l);
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
m_writeTrustStore_l_roots_certs(tPtr);
|
|
}
|
|
|
|
for (Vector< SharedPtr< Peer > >::const_iterator p(m_rootPeers.begin()); p != m_rootPeers.end(); ++p) {
|
|
if ((*p)->identity() == id)
|
|
return *p;
|
|
}
|
|
}
|
|
return SharedPtr< Peer >();
|
|
}
|
|
|
|
bool Topology::removeRoot(void *const tPtr, Address address)
|
|
{
|
|
RWMutex::Lock l1(m_roots_l);
|
|
bool removed = false;
|
|
for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
if (r->first.address() == address) {
|
|
r->second.erase(s_nullCert);
|
|
if (r->second.empty()) {
|
|
m_roots.erase(r++);
|
|
{
|
|
Mutex::Lock certsLock(m_certs_l);
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
m_writeTrustStore_l_roots_certs(tPtr);
|
|
}
|
|
removed = true;
|
|
} else {
|
|
++r;
|
|
}
|
|
} else ++r;
|
|
}
|
|
return removed;
|
|
}
|
|
|
|
struct p_RootRankingComparisonOperator
|
|
{
|
|
ZT_INLINE bool operator()(const SharedPtr< Peer > &a, const SharedPtr< Peer > &b) const noexcept
|
|
{
|
|
// Sort roots first in order of which root has spoken most recently, but
|
|
// only at a resolution of ZT_PATH_KEEPALIVE_PERIOD/2 units of time. This
|
|
// means that living roots that seem responsive are ranked the same. Then
|
|
// they're sorted in descending order of latency so that the apparently
|
|
// fastest root is ranked first.
|
|
const int64_t alr = a->lastReceive() / (ZT_PATH_KEEPALIVE_PERIOD / 2);
|
|
const int64_t blr = b->lastReceive() / (ZT_PATH_KEEPALIVE_PERIOD / 2);
|
|
if (alr < blr) {
|
|
return true;
|
|
} else if (blr == alr) {
|
|
const int bb = b->latency();
|
|
if (bb < 0)
|
|
return true;
|
|
return bb < a->latency();
|
|
}
|
|
}
|
|
};
|
|
|
|
void Topology::rankRoots()
|
|
{
|
|
RWMutex::Lock l1(m_roots_l);
|
|
std::sort(m_rootPeers.begin(), m_rootPeers.end(), p_RootRankingComparisonOperator());
|
|
}
|
|
|
|
void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
|
|
{
|
|
// Peer and path delete operations are batched to avoid holding write locks on
|
|
// these structures for any length of time. A list is compiled in read mode,
|
|
// then the write lock is acquired for each delete. This adds overhead if there
|
|
// are a lot of deletions, but that's not common.
|
|
|
|
// Clean any expired certificates
|
|
{
|
|
Mutex::Lock l1(m_certs_l);
|
|
if (m_cleanCertificates_l_certs(now)) {
|
|
RWMutex::Lock l2(m_roots_l);
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
}
|
|
}
|
|
|
|
// Delete peers that are stale or offline.
|
|
{
|
|
Vector< Address > toDelete;
|
|
{
|
|
RWMutex::RLock l1(m_peers_l);
|
|
RWMutex::RLock l2(m_roots_l);
|
|
for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
|
|
++i) {
|
|
// TODO: also delete if the peer has not exchanged meaningful communication in a while, such as
|
|
// a network frame or non-trivial control packet.
|
|
if (((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.find(i->second->identity()) == m_roots.end()))
|
|
toDelete.push_back(i->first);
|
|
}
|
|
}
|
|
for (Vector< Address >::iterator i(toDelete.begin()); i != toDelete.end(); ++i) {
|
|
RWMutex::Lock l1(m_peers_l);
|
|
const Map< Address, SharedPtr< Peer > >::iterator p(m_peers.find(*i));
|
|
if (likely(p != m_peers.end())) {
|
|
p->second->save(tPtr);
|
|
m_peers.erase(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Delete paths that are no longer held by anyone else ("weak reference" type behavior).
|
|
{
|
|
Vector< UniqueID > toDelete;
|
|
{
|
|
RWMutex::RLock l1(m_paths_l);
|
|
for (Map< UniqueID, SharedPtr< Path > >::iterator i(m_paths.begin()); i != m_paths.end();
|
|
++i) {
|
|
if (i->second.weakGC())
|
|
toDelete.push_back(i->first);
|
|
}
|
|
}
|
|
for (Vector< UniqueID >::iterator i(toDelete.begin()); i != toDelete.end(); ++i) {
|
|
RWMutex::Lock l1(m_paths_l);
|
|
const Map< UniqueID, SharedPtr< Path > >::iterator p(m_paths.find(*i));
|
|
if (likely(p != m_paths.end()))
|
|
m_paths.erase(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Topology::saveAll(void *tPtr)
|
|
{
|
|
RWMutex::RLock l(m_peers_l);
|
|
for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
|
|
++i)
|
|
i->second->save(tPtr);
|
|
}
|
|
|
|
ZT_CertificateError Topology::addCertificate(void *tPtr, const Certificate &cert, const int64_t now, const unsigned int localTrust, const bool writeToLocalStore, const bool refreshRootSets, const bool verify)
|
|
{
|
|
{
|
|
Mutex::Lock certsLock(m_certs_l);
|
|
|
|
// Check to see if we already have this specific certificate.
|
|
const SHA384Hash serial(cert.serialNo);
|
|
if (m_certs.find(serial) != m_certs.end())
|
|
return ZT_CERTIFICATE_ERROR_NONE;
|
|
|
|
// Verify certificate all the way to a trusted root. This also verifies inner
|
|
// signatures such as those of locators or the subject unique ID.
|
|
if (verify) {
|
|
const ZT_CertificateError err = m_verifyCertificate_l_certs(cert, now, localTrust, false);
|
|
if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
return err;
|
|
}
|
|
|
|
// Create entry containing copy of certificate and trust flags.
|
|
const std::pair< SharedPtr< const Certificate >, unsigned int > certEntry(SharedPtr< const Certificate >(new Certificate(cert)), localTrust);
|
|
|
|
// If the subject contains a unique ID, check if we already have a cert for the
|
|
// same uniquely identified subject. If so, check its subject timestamp and keep
|
|
// the one we have if newer. Otherwise replace it. Note that the verification
|
|
// function will have checked the unique ID proof signature already if a unique
|
|
// ID was present.
|
|
if ((cert.subject.uniqueId) && (cert.subject.uniqueIdSize > 0)) {
|
|
const Vector< uint8_t > uniqueId(cert.subject.uniqueId, cert.subject.uniqueId + cert.subject.uniqueIdSize);
|
|
std::pair< SharedPtr< const Certificate >, unsigned int > &bySubjectUniqueId = m_certsBySubjectUniqueId[uniqueId];
|
|
if (bySubjectUniqueId.first) {
|
|
if (bySubjectUniqueId.first->subject.timestamp >= cert.subject.timestamp)
|
|
return ZT_CERTIFICATE_ERROR_HAVE_NEWER_CERT;
|
|
m_eraseCertificate_l_certs(bySubjectUniqueId.first);
|
|
m_certsBySubjectUniqueId[uniqueId] = certEntry; // reference bySubjectUniqueId no longer valid
|
|
} else {
|
|
bySubjectUniqueId = certEntry;
|
|
}
|
|
}
|
|
|
|
// Save certificate by serial number.
|
|
m_certs[serial] = certEntry;
|
|
|
|
// Add certificate to sets of certificates whose subject references a given identity.
|
|
for (unsigned int i = 0; i < cert.subject.identityCount; ++i) {
|
|
const Identity *const ii = reinterpret_cast<const Identity *>(cert.subject.identities[i].identity);
|
|
m_certsBySubjectIdentity[ii->fingerprint()].insert(certEntry);
|
|
}
|
|
|
|
// Clean any certificates whose chains are now broken, which can happen if there was
|
|
// an update that replaced an old cert with a given unique ID. Otherwise this generally
|
|
// does nothing here. Skip if verify is false since this means we're mindlessly loading
|
|
// certificates, which right now only happens on startup when they're loaded from the
|
|
// local certificate cache.
|
|
if (verify)
|
|
m_cleanCertificates_l_certs(now);
|
|
|
|
// Refresh the root peers lists, since certs may enumerate roots.
|
|
if (refreshRootSets) {
|
|
RWMutex::Lock rootsLock(m_roots_l);
|
|
m_updateRootPeers_l_roots_certs(tPtr);
|
|
}
|
|
}
|
|
|
|
if (writeToLocalStore) {
|
|
// Write certificate data prefixed by local trust flags as a 32-bit integer.
|
|
Vector< uint8_t > certData(cert.encode());
|
|
uint64_t id[6];
|
|
Utils::copy< 48 >(id, cert.serialNo);
|
|
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_CERT, id, certData.data(), (unsigned int)certData.size());
|
|
}
|
|
|
|
return ZT_CERTIFICATE_ERROR_NONE;
|
|
}
|
|
|
|
void Topology::m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &cert)
|
|
{
|
|
// assumes m_certs is locked for writing
|
|
|
|
m_certs.erase(SHA384Hash(cert->serialNo));
|
|
|
|
if (cert->subject.uniqueIdSize > 0)
|
|
m_certsBySubjectUniqueId.erase(Vector< uint8_t >(cert->subject.uniqueId, cert->subject.uniqueId + cert->subject.uniqueIdSize));
|
|
|
|
for (unsigned int i = 0; i < cert->subject.identityCount; ++i) {
|
|
const Identity *const ii = reinterpret_cast<const Identity *>(cert->subject.identities[i].identity);
|
|
Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::iterator
|
|
bySubjectIdentity(m_certsBySubjectIdentity.find(ii->fingerprint()));
|
|
if (bySubjectIdentity != m_certsBySubjectIdentity.end()) {
|
|
bySubjectIdentity->second.erase(cert);
|
|
if (bySubjectIdentity->second.empty())
|
|
m_certsBySubjectIdentity.erase(bySubjectIdentity);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Topology::m_cleanCertificates_l_certs(int64_t now)
|
|
{
|
|
// assumes m_certs is locked for writing
|
|
|
|
bool deleted = false;
|
|
Vector< SharedPtr< const Certificate >> toDelete;
|
|
for (;;) {
|
|
for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
|
|
// Verify, but the last boolean option tells it to skip signature checks as this would
|
|
// already have been done. This will therefore just check the path and validity times
|
|
// of the certificate.
|
|
const ZT_CertificateError err = m_verifyCertificate_l_certs(*(c->second.first), now, c->second.second, true);
|
|
if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
toDelete.push_back(c->second.first);
|
|
}
|
|
|
|
if (toDelete.empty())
|
|
break;
|
|
|
|
deleted = true;
|
|
for (Vector< SharedPtr< const Certificate > >::iterator c(toDelete.begin()); c != toDelete.end(); ++c)
|
|
m_eraseCertificate_l_certs(*c);
|
|
toDelete.clear();
|
|
}
|
|
|
|
return deleted;
|
|
}
|
|
|
|
bool Topology::m_verifyCertificateChain_l_certs(const Certificate *current, const int64_t now) const
|
|
{
|
|
// assumes m_certs is at least locked for reading
|
|
|
|
Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::const_iterator
|
|
c = m_certsBySubjectIdentity.find(reinterpret_cast<const Identity *>(current->issuer)->fingerprint());
|
|
if (c != m_certsBySubjectIdentity.end()) {
|
|
for (Map< SharedPtr< const Certificate >, unsigned int >::const_iterator cc(c->second.begin()); cc != c->second.end(); ++cc) {
|
|
if (
|
|
(cc->first->maxPathLength > current->maxPathLength) &&
|
|
(cc->first->validity[0] <= now) && // not before now
|
|
(cc->first->validity[1] >= now) && // not after now
|
|
(cc->first->validity[0] <= current->timestamp) && // not before child cert's timestamp
|
|
(cc->first->validity[1] >= current->timestamp) // not after child cert's timestamp
|
|
) {
|
|
if ((cc->second & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ROOT_CA) != 0)
|
|
return true;
|
|
if (m_verifyCertificateChain_l_certs(cc->first.ptr(), now))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ZT_CertificateError Topology::m_verifyCertificate_l_certs(const Certificate &cert, const int64_t now, unsigned int localTrust, bool skipSignatureCheck) const
|
|
{
|
|
// assumes m_certs is at least locked for reading
|
|
|
|
// Check certificate time window against current time.
|
|
if ((cert.validity[0] > now) || (cert.validity[1] < now))
|
|
return ZT_CERTIFICATE_ERROR_OUT_OF_VALID_TIME_WINDOW;
|
|
|
|
// Verify primary and internal signatures and other objects unless the caller
|
|
// elected to skip, which is done to re-check certs already in the DB.
|
|
if (!skipSignatureCheck) {
|
|
const ZT_CertificateError err = cert.verify();
|
|
if (err != ZT_CERTIFICATE_ERROR_NONE)
|
|
return err;
|
|
}
|
|
|
|
// If this is a root CA, we can skip this as we're already there. Otherwise we
|
|
// recurse up the tree until we hit a root CA.
|
|
if ((localTrust & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ROOT_CA) == 0) {
|
|
if (!m_verifyCertificateChain_l_certs(&cert, now))
|
|
return ZT_CERTIFICATE_ERROR_INVALID_CHAIN;
|
|
}
|
|
|
|
return ZT_CERTIFICATE_ERROR_NONE;
|
|
}
|
|
|
|
void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &peer)
|
|
{
|
|
// does not require any locks to be held
|
|
|
|
try {
|
|
uint64_t id[2];
|
|
id[0] = zta.toInt();
|
|
id[1] = 0;
|
|
Vector< uint8_t > data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_PEER, id));
|
|
if (data.size() > 8) {
|
|
const uint8_t *d = data.data();
|
|
int dl = (int)data.size();
|
|
|
|
const int64_t ts = (int64_t)Utils::loadBigEndian< uint64_t >(d);
|
|
Peer *const p = new Peer(RR);
|
|
int n = p->unmarshal(d + 8, dl - 8);
|
|
if (n < 0) {
|
|
delete p;
|
|
return;
|
|
}
|
|
if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) {
|
|
// TODO: handle many peers, same address (?)
|
|
peer.set(p);
|
|
return;
|
|
}
|
|
}
|
|
} catch (...) {
|
|
peer.zero();
|
|
}
|
|
}
|
|
|
|
void Topology::m_updateRootPeers_l_roots_certs(void *tPtr)
|
|
{
|
|
// assumes m_roots_l and m_certs_l are locked for write
|
|
|
|
// Clear m_roots but preserve locally added roots (indicated by a null cert ptr entry).
|
|
for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
if (r->second.find(s_nullCert) == r->second.end()) {
|
|
m_roots.erase(r++);
|
|
} else {
|
|
r->second.clear();
|
|
r->second.insert(s_nullCert);
|
|
++r;
|
|
}
|
|
}
|
|
|
|
// Populate m_roots from certificate subject identities from certificates flagged
|
|
// as local root set certificates.
|
|
for (SortedMap< Vector< uint8_t >, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certsBySubjectUniqueId.begin()); c != m_certsBySubjectUniqueId.end(); ++c) {
|
|
if ((c->second.second & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ZEROTIER_ROOT_SET) != 0) {
|
|
for (unsigned int i = 0; i < c->second.first->subject.identityCount; ++i)
|
|
m_roots[*reinterpret_cast<const Identity *>(c->second.first->subject.identities[i].identity)].insert(c->second.first);
|
|
}
|
|
}
|
|
|
|
// Create a new rootPeers vector and swap.
|
|
Vector< SharedPtr< Peer >> newRootPeers;
|
|
newRootPeers.reserve(m_roots.size());
|
|
for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
const SharedPtr< Peer > p(this->peer(tPtr, r->first.address(), true));
|
|
if ((p) && (p->identity() == r->first))
|
|
newRootPeers.push_back(p);
|
|
}
|
|
std::sort(newRootPeers.begin(), newRootPeers.end(), p_RootRankingComparisonOperator());
|
|
m_rootPeers.swap(newRootPeers);
|
|
}
|
|
|
|
void Topology::m_writeTrustStore_l_roots_certs(void *tPtr) const
|
|
{
|
|
// assumes m_roots_l and m_certs_l are locked for write
|
|
|
|
char tmp[256];
|
|
Dictionary d;
|
|
|
|
d.add("v", (uint64_t)0); // version
|
|
|
|
unsigned long idx = 0;
|
|
d.add("c$", (uint64_t)m_certs.size());
|
|
for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
|
|
d[Dictionary::arraySubscript(tmp, "c$.s", idx)].assign(c->first.data, c->first.data + ZT_SHA384_DIGEST_SIZE);
|
|
d.add(Dictionary::arraySubscript(tmp, "c$.lt", idx), (uint64_t)c->second.second);
|
|
++idx;
|
|
}
|
|
|
|
unsigned long localRootCount = 0;
|
|
for (Map< Identity, Set< SharedPtr< const Certificate > > >::const_iterator r(m_roots.begin()); r != m_roots.end();) {
|
|
if (r->second.find(s_nullCert) != r->second.end())
|
|
d.addO(Dictionary::arraySubscript(tmp, "lr$.i", localRootCount++), r->first);
|
|
}
|
|
d.add("lr$", (uint64_t)localRootCount);
|
|
|
|
Vector< uint8_t > trustStore;
|
|
d.encode(trustStore);
|
|
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256, trustStore.data(), (unsigned int)trustStore.size());
|
|
}
|
|
|
|
} // namespace ZeroTier
|