ZeroTierOne/node/Utils.cpp

478 lines
12 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include "Utils.hpp"
#include "Mutex.hpp"
#include "AES.hpp"
#include "SHA512.hpp"
#ifdef __UNIX_LIKE__
#include <unistd.h>
#include <fcntl.h>
#include <sys/uio.h>
#endif
#ifdef __WINDOWS__
#include <wincrypt.h>
#endif
namespace ZeroTier {
namespace Utils {
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
CPUIDRegisters::CPUIDRegisters()
{
#ifdef __WINDOWS__
int regs[4];
__cpuid(regs,1);
eax = (uint32_t)regs[0];
ebx = (uint32_t)regs[1];
ecx = (uint32_t)regs[2];
edx = (uint32_t)regs[3];
#else
__asm__ __volatile__ (
"cpuid"
: "=a"(eax),"=b"(ebx),"=c"(ecx),"=d"(edx)
: "a"(1),"c"(0)
);
#endif
rdrand = ((ecx & (1U << 30U)) != 0);
aes = ( ((ecx & (1U << 25U)) != 0) && ((ecx & (1U << 19U)) != 0) && ((ecx & (1U << 1U)) != 0) ); // AES, PCLMUL, SSE4.1
}
const CPUIDRegisters CPUID;
#endif
const uint64_t ZERO256[4] = { 0,0,0,0 };
const char HEXCHARS[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' };
bool secureEq(const void *a,const void *b,unsigned int len) noexcept
{
uint8_t diff = 0;
for(unsigned int i=0;i<len;++i)
diff |= ( (reinterpret_cast<const uint8_t *>(a))[i] ^ (reinterpret_cast<const uint8_t *>(b))[i] );
return (diff == 0);
}
// Crazy hack to force memory to be securely zeroed in spite of the best efforts of optimizing compilers.
static void _Utils_doBurn(volatile uint8_t *ptr,unsigned int len)
{
#ifndef ZT_NO_UNALIGNED_ACCESS
const uint64_t z = 0;
while (len >= 32) {
*reinterpret_cast<volatile uint64_t *>(ptr) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 8) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 16) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 24) = z;
ptr += 32;
len -= 32;
}
while (len >= 8) {
*reinterpret_cast<volatile uint64_t *>(ptr) = z;
ptr += 8;
len -= 8;
}
#endif
for(unsigned int i=0;i<len;++i)
ptr[i] = 0;
}
static void (*volatile _Utils_doBurn_ptr)(volatile uint8_t *,unsigned int) = _Utils_doBurn;
void burn(void *ptr,unsigned int len) { (_Utils_doBurn_ptr)((volatile uint8_t *)ptr,len); }
static unsigned long _Utils_itoa(unsigned long n,char *s)
{
if (n == 0)
return 0;
unsigned long pos = _Utils_itoa(n / 10,s);
if (pos >= 22) // sanity check,should be impossible
pos = 22;
s[pos] = (char)('0' + (n % 10));
return pos + 1;
}
char *decimal(unsigned long n,char s[24]) noexcept
{
if (n == 0) {
s[0] = '0';
s[1] = (char)0;
return s;
}
s[_Utils_itoa(n,s)] = (char)0;
return s;
}
char *hex(uint8_t i,char s[3]) noexcept
{
s[0] = HEXCHARS[(i >> 4U) & 0xfU];
s[1] = HEXCHARS[i & 0xfU];
s[2] = 0;
return s;
}
char *hex(uint16_t i,char s[5]) noexcept
{
s[0] = HEXCHARS[(i >> 12U) & 0xfU];
s[1] = HEXCHARS[(i >> 8U) & 0xfU];
s[2] = HEXCHARS[(i >> 4U) & 0xfU];
s[3] = HEXCHARS[i & 0xfU];
s[4] = 0;
return s;
}
char *hex(uint32_t i,char s[9]) noexcept
{
s[0] = HEXCHARS[(i >> 28U) & 0xfU];
s[1] = HEXCHARS[(i >> 24U) & 0xfU];
s[2] = HEXCHARS[(i >> 20U) & 0xfU];
s[3] = HEXCHARS[(i >> 16U) & 0xfU];
s[4] = HEXCHARS[(i >> 12U) & 0xfU];
s[5] = HEXCHARS[(i >> 8U) & 0xfU];
s[6] = HEXCHARS[(i >> 4U) & 0xfU];
s[7] = HEXCHARS[i & 0xfU];
s[8] = 0;
return s;
}
char *hex(uint64_t i,char s[17]) noexcept
{
s[0] = HEXCHARS[(i >> 60U) & 0xfU];
s[1] = HEXCHARS[(i >> 56U) & 0xfU];
s[2] = HEXCHARS[(i >> 52U) & 0xfU];
s[3] = HEXCHARS[(i >> 48U) & 0xfU];
s[4] = HEXCHARS[(i >> 44U) & 0xfU];
s[5] = HEXCHARS[(i >> 40U) & 0xfU];
s[6] = HEXCHARS[(i >> 36U) & 0xfU];
s[7] = HEXCHARS[(i >> 32U) & 0xfU];
s[8] = HEXCHARS[(i >> 28U) & 0xfU];
s[9] = HEXCHARS[(i >> 24U) & 0xfU];
s[10] = HEXCHARS[(i >> 20U) & 0xfU];
s[11] = HEXCHARS[(i >> 16U) & 0xfU];
s[12] = HEXCHARS[(i >> 12U) & 0xfU];
s[13] = HEXCHARS[(i >> 8U) & 0xfU];
s[14] = HEXCHARS[(i >> 4U) & 0xfU];
s[15] = HEXCHARS[i & 0xfU];
s[16] = 0;
return s;
}
uint64_t unhex(const char *s) noexcept
{
uint64_t n = 0;
if (s) {
int k = 0;
while (k < 16) {
char hc = *(s++);
if (!hc) break;
uint8_t c = 0;
if ((hc >= 48)&&(hc <= 57))
c = hc - 48;
else if ((hc >= 97)&&(hc <= 102))
c = hc - 87;
else if ((hc >= 65)&&(hc <= 70))
c = hc - 55;
n <<= 4U;
n |= (uint64_t)c;
++k;
}
}
return n;
}
char *hex(const void *d,unsigned int l,char *s) noexcept
{
char *const save = s;
for(unsigned int i=0;i<l;++i) {
const unsigned int b = reinterpret_cast<const uint8_t *>(d)[i];
*(s++) = HEXCHARS[b >> 4U];
*(s++) = HEXCHARS[b & 0xfU];
}
*s = (char)0;
return save;
}
unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen) noexcept
{
unsigned int l = 0;
const char *hend = h + hlen;
while (l < buflen) {
if (h == hend) break;
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) break;
uint8_t c = 0;
if ((hc >= 48)&&(hc <= 57))
c = hc - 48;
else if ((hc >= 97)&&(hc <= 102))
c = hc - 87;
else if ((hc >= 65)&&(hc <= 70))
c = hc - 55;
if (h == hend) break;
hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) break;
c <<= 4;
if ((hc >= 48)&&(hc <= 57))
c |= hc - 48;
else if ((hc >= 97)&&(hc <= 102))
c |= hc - 87;
else if ((hc >= 65)&&(hc <= 70))
c |= hc - 55;
reinterpret_cast<uint8_t *>(buf)[l++] = c;
}
return l;
}
void getSecureRandom(void *buf,unsigned int bytes) noexcept
{
static Mutex globalLock;
static bool initialized = false;
static uint64_t randomState[16]; // secret state
static uint64_t randomBuf[8192]; // next batch of random bytes
static unsigned long randomPtr = sizeof(randomBuf); // refresh on first iteration
// This secure random function gets entropy from the system random source (e.g. /dev/urandom),
// CPU random instructions if present, and other sources and uses them to initialize a SHA/AES
// based CSPRNG with a large state. System random sources are not used directly to mitigate
// against cases where the system random source is broken in some way, which does happen from
// time to time.
Mutex::Lock gl(globalLock);
for(unsigned int i=0;i<bytes;++i) {
if (randomPtr >= sizeof(randomBuf)) {
randomPtr = 0;
if (!initialized) {
initialized = true;
// Fill both randomState and randomBuf from system random source. Failure here
// is fatal to the running application and indicates a serious system problem.
// This is some of the only OS-specific code in the core.
#ifdef __WINDOWS__
HCRYPTPROV cryptProvider = NULL;
if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomState),(BYTE *)randomState)) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomBuf),(BYTE *)randomBuf)) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
CryptReleaseContext(cryptProvider,0);
#else
int devURandomFd = ::open("/dev/urandom",O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr,"FATAL: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
}
if ((long)::read(devURandomFd,randomState,sizeof(randomState)) != (long)sizeof(randomState)) {
::close(devURandomFd);
fprintf(stderr,"FATAL: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
if ((long)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (long)sizeof(randomBuf)) {
::close(devURandomFd);
fprintf(stderr,"FATAL: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
close(devURandomFd);
#endif
// Mix in additional entropy from time, the address of 'buf', rdrand if present, etc.
randomState[0] ^= (uint64_t)time(nullptr);
randomState[1] ^= (uint64_t)((uintptr_t)buf);
#ifdef __UNIX_LIKE__
randomState[2] ^= (uint64_t)getpid();
randomState[3] ^= (uint64_t)getppid();
#endif
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
if (CPUID.rdrand) {
uint64_t tmp = 0;
for(int k=0;k<16;++k) {
_rdrand64_step((unsigned long long *)&tmp);
randomState[k] ^= tmp;
}
}
#endif
}
// Generate a new randomBuf:
//
// (1) Generate next randomState by perturbing, hashing, and replacing the first 384 bits with the hash.
// (2) Initialize AES using the first 256 bits of the new randomState as its key.
// (3) Initialize a 128-bit counter field using the following 128 bits of randomState.
// (4) Encrypt randomBuf with AES-CTR (machine-endian counter since spec conformance doesn't matter).
++randomState[15];
SHA384(randomState,randomState,sizeof(randomState));
AES aes(randomState);
uint64_t ctr[2],tmp[2];
ctr[0] = randomState[4];
ctr[1] = randomState[5]; // AES key + CTR/nonce = part replaced each time by SHA384
for(int k=0;k<8192;k+=2) {
++ctr[0];
aes.encrypt(ctr,tmp);
randomBuf[k] ^= tmp[0];
randomBuf[k+1] ^= tmp[1];
}
}
reinterpret_cast<uint8_t *>(buf)[i] = reinterpret_cast<uint8_t *>(randomBuf)[randomPtr++];
}
}
uint64_t getSecureRandomU64() noexcept
{
uint64_t tmp = 0;
getSecureRandom(&tmp,sizeof(tmp));
return tmp;
}
int b32e(const uint8_t *data,int length,char *result,int bufSize) noexcept
{
if (length < 0 || length > (1 << 28)) {
result[0] = (char)0;
return -1;
}
int count = 0;
if (length > 0) {
int buffer = data[0];
int next = 1;
int bitsLeft = 8;
while (count < bufSize && (bitsLeft > 0 || next < length)) {
if (bitsLeft < 5) {
if (next < length) {
buffer <<= 8U;
buffer |= data[next++] & 0xffU;
bitsLeft += 8;
} else {
int pad = 5 - bitsLeft;
buffer <<= pad;
bitsLeft += pad;
}
}
int index = 0x1f & (buffer >> (unsigned int)(bitsLeft - 5));
bitsLeft -= 5;
result[count++] = "abcdefghijklmnopqrstuvwxyz234567"[index];
}
}
if (count < bufSize) {
result[count] = (char)0;
return count;
}
result[0] = (char)0;
return -1;
}
int b32d(const char *encoded,uint8_t *result,int bufSize) noexcept
{
int buffer = 0;
int bitsLeft = 0;
int count = 0;
for (const uint8_t *ptr = (const uint8_t *)encoded;count<bufSize && *ptr; ++ptr) {
uint8_t ch = *ptr;
if (ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n' || ch == '-' || ch == '.') {
continue;
}
buffer <<= 5;
if (ch == '0') {
ch = 'O';
} else if (ch == '1') {
ch = 'L';
} else if (ch == '8') {
ch = 'B';
}
if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')) {
ch = (ch & 0x1f) - 1;
} else if (ch >= '2' && ch <= '7') {
ch -= '2' - 26;
} else {
return -1;
}
buffer |= ch;
bitsLeft += 5;
if (bitsLeft >= 8) {
result[count++] = buffer >> (bitsLeft - 8);
bitsLeft -= 8;
}
}
if (count < bufSize)
result[count] = (uint8_t)0;
return count;
}
uint64_t random() noexcept
{
// https://en.wikipedia.org/wiki/Xorshift#xoshiro256**
static volatile uint64_t s_s0 = getSecureRandomU64();
static volatile uint64_t s_s1 = getSecureRandomU64();
static volatile uint64_t s_s2 = getSecureRandomU64();
static volatile uint64_t s_s3 = getSecureRandomU64();
uint64_t s0 = s_s0;
uint64_t s1 = s_s1;
uint64_t s2 = s_s2;
uint64_t s3 = s_s3;
const uint64_t s1x5 = s1 * 5;
const uint64_t result = ((s1x5 << 7U)|(s1x5 >> 57U)) * 9;
const uint64_t t = s1 << 17U;
s2 ^= s0;
s3 ^= s1;
s1 ^= s2;
s0 ^= s3;
s2 ^= t;
s3 = ((s3 << 45U)|(s3 >> 19U));
s_s0 = s0;
s_s1 = s1;
s_s2 = s2;
s_s3 = s3;
return result;
}
bool scopy(char *dest,unsigned int len,const char *src) noexcept
{
if (!len)
return false; // sanity check
if (!src) {
*dest = (char)0;
return true;
}
char *const end = dest + len;
while ((*dest++ = *src++)) {
if (dest == end) {
*(--dest) = (char)0;
return false;
}
}
return true;
}
} // namespace Utils
} // namespace ZeroTier