ZeroTierOne/node/Node.cpp

1029 lines
31 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <cstdlib>
#include <cstring>
#include <cstdint>
#include "Constants.hpp"
#include "SharedPtr.hpp"
#include "Node.hpp"
#include "NetworkController.hpp"
#include "Topology.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Network.hpp"
#include "Trace.hpp"
#include "ScopedPtr.hpp"
#include "Locator.hpp"
#include "Protocol.hpp"
namespace ZeroTier {
Node::Node(void *uPtr,void *tPtr,const struct ZT_Node_Callbacks *callbacks,int64_t now) :
_RR(this),
RR(&_RR),
_cb(*callbacks),
_uPtr(uPtr),
_networks(),
_networksMask(63),
_now(now),
_lastPing(0),
_lastHousekeepingRun(0),
_lastNetworkHousekeepingRun(0),
_lastPathKeepaliveCheck(0),
_natMustDie(true),
_online(false)
{
_networks.resize(64); // _networksMask + 1, must be power of two
memset((void *)_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
memset((void *)_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
memset((void *)_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0;
std::vector<uint8_t> data(stateObjectGet(tPtr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp));
bool haveIdentity = false;
if (!data.empty()) {
data.push_back(0); // zero-terminate string
if (RR->identity.fromString((const char *)data.data())) {
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
haveIdentity = true;
}
}
if (!haveIdentity) {
RR->identity.generate(Identity::C25519);
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
stateObjectPut(tPtr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr));
stateObjectPut(tPtr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
} else {
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
data = stateObjectGet(tPtr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp);
if ((data.empty())||(memcmp(data.data(),RR->publicIdentityStr,strlen(RR->publicIdentityStr)) != 0))
stateObjectPut(tPtr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
}
#if 0
char *m = nullptr;
try {
m = reinterpret_cast<char *>(malloc(16 + sizeof(Trace) + sizeof(Switch) + sizeof(Topology) + sizeof(SelfAwareness)));
if (!m)
throw std::bad_alloc();
RR->rtmem = m;
while (((uintptr_t)m & 0xfU) != 0) ++m;
RR->t = new (m) Trace(RR);
m += sizeof(Trace);
RR->sw = new (m) Switch(RR);
m += sizeof(Switch);
RR->topology = new (m) Topology(RR,RR->identity,tPtr);
m += sizeof(Topology);
RR->sa = new (m) SelfAwareness(RR);
} catch ( ... ) {
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->sw) RR->sw->~Switch();
if (RR->t) RR->t->~Trace();
if (m) ::free(m);
throw;
}
#endif
postEvent(tPtr, ZT_EVENT_UP);
}
Node::~Node()
{
// Let go of all networks to leave them. Do it this way in case Network wants to
// do anything in its destructor that locks the _networks lock to avoid a deadlock.
std::vector< SharedPtr<Network> > networks;
{
RWMutex::Lock _l(_networks_m);
networks.swap(_networks);
}
networks.clear();
_networks_m.lock();
_networks_m.unlock();
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->t) RR->t->~Trace();
free(RR->rtmem);
// Let go of cached Buf objects. If other nodes happen to be running in this
// same process space new Bufs will be allocated as needed, but this is almost
// never the case. Calling this here saves RAM if we are running inside something
// that wants to keep running after tearing down its ZeroTier core instance.
Buf::freePool();
}
void Node::shutdown(void *tPtr)
{
RR->topology->saveAll(tPtr);
}
ZT_ResultCode Node::processWirePacket(
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
//RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
//RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
return ZT_RESULT_OK;
} else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
struct _processBackgroundTasks_ping_eachPeer
{
int64_t now;
Node *parent;
void *tPtr;
bool online;
std::vector<Address> rootsNotOnline;
ZT_ALWAYS_INLINE void operator()(const SharedPtr<Peer> &peer,const bool isRoot)
{
peer->ping(tPtr,now,isRoot);
if (isRoot) {
if (peer->active(now)) {
online = true;
} else {
rootsNotOnline.push_back(peer->address());
}
}
}
};
static uint8_t keepAlivePayload = 0; // junk payload for keepalive packets
struct _processBackgroundTasks_path_keepalive
{
int64_t now;
RuntimeEnvironment *RR;
void *tPtr;
ZT_ALWAYS_INLINE void operator()(const SharedPtr<Path> &path)
{
if ((now - path->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) {
++keepAlivePayload;
path->send(RR,tPtr,&keepAlivePayload,1,now);
}
}
};
ZT_ResultCode Node::processBackgroundTasks(void *tPtr, int64_t now, volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
Mutex::Lock bl(_backgroundTasksLock);
if ((now - _lastPing) >= ZT_PEER_PING_PERIOD) {
_lastPing = now;
try {
_processBackgroundTasks_ping_eachPeer pf;
pf.now = now;
pf.parent = this;
pf.tPtr = tPtr;
pf.online = false;
RR->topology->eachPeerWithRoot<_processBackgroundTasks_ping_eachPeer &>(pf);
if (pf.online != _online) {
_online = pf.online;
postEvent(tPtr, _online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
}
RR->topology->rankRoots(now);
if (pf.online) {
// If we have at least one online root, request whois for roots not online.
// This will give us updated locators for these roots which may contain new
// IP addresses. It will also auto-discover IPs for roots that were not added
// with an initial bootstrap address.
// TODO
//for (std::vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
// RR->sw->requestWhois(tPtr,now,*r);
}
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
if ((now - _lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) {
_lastHousekeepingRun = now;
{
RWMutex::RLock l(_networks_m);
for(std::vector< SharedPtr<Network> >::const_iterator i(_networks.begin());i!=_networks.end();++i) {
if ((*i))
(*i)->doPeriodicTasks(tPtr,now);
}
}
}
if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
_lastHousekeepingRun = now;
try {
// Clean up any old local controller auth memoizations. This is an
// optimization for network controllers to know whether to accept
// or trust nodes without doing an extra cert check.
{
_localControllerAuthorizations_m.lock();
Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations);
_LocalControllerAuth *k = (_LocalControllerAuth *)0;
int64_t *v = (int64_t *)0;
while (i.next(k,v)) {
if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3)) {
_localControllerAuthorizations.erase(*k);
}
}
_localControllerAuthorizations_m.unlock();
}
RR->topology->doPeriodicTasks(tPtr, now);
RR->sa->clean(now);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
if ((now - _lastPathKeepaliveCheck) >= ZT_PATH_KEEPALIVE_PERIOD) {
_lastPathKeepaliveCheck = now;
_processBackgroundTasks_path_keepalive pf;
pf.now = now;
pf.RR = RR;
pf.tPtr = tPtr;
RR->topology->eachPath<_processBackgroundTasks_path_keepalive &>(pf);
}
int64_t earliestAlarmAt = 0x7fffffffffffffffLL;
std::vector<Address> bzzt;
{
RWMutex::RMaybeWLock l(_peerAlarms_l);
for(std::map<Address,int64_t>::iterator a(_peerAlarms.begin());a!=_peerAlarms.end();) {
if (now >= a->second) {
bzzt.push_back(a->first);
l.write(); // acquire write lock if not already in write mode
_peerAlarms.erase(a++);
} else {
if (a->second < earliestAlarmAt)
earliestAlarmAt = a->second;
++a;
}
}
}
for(std::vector<Address>::iterator a(bzzt.begin());a!=bzzt.end();++a) {
const SharedPtr<Peer> p(RR->topology->peer(tPtr,*a,false));
if (p)
p->alarm(tPtr,now);
}
try {
*nextBackgroundTaskDeadline = std::min(earliestAlarmAt,now + ZT_MAX_TIMER_TASK_INTERVAL);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr)
{
RWMutex::Lock l(_networks_m);
const uint64_t nwidHashed = nwid + (nwid >> 32U);
SharedPtr<Network> *nw = &(_networks[(unsigned long)(nwidHashed & _networksMask)]);
// Enlarge flat hash table of networks until all networks fit without collisions.
if (*nw) {
unsigned long newNetworksSize = (unsigned long)_networks.size();
std::vector< SharedPtr<Network> > newNetworks;
uint64_t newNetworksMask,id;
std::vector< SharedPtr<Network> >::const_iterator i;
try_larger_network_hashtable:
newNetworksSize <<= 1U; // must remain a power of two
newNetworks.clear();
newNetworks.resize(newNetworksSize);
newNetworksMask = (uint64_t)(newNetworksSize - 1);
for(i=_networks.begin();i!=_networks.end();++i) {
id = (*i)->id();
nw = &(newNetworks[(unsigned long)((id + (id >> 32U)) & newNetworksMask)]);
if (*nw)
goto try_larger_network_hashtable;
*nw = *i;
}
if (newNetworks[(unsigned long)(nwidHashed & newNetworksMask)])
goto try_larger_network_hashtable;
_networks.swap(newNetworks);
_networksMask = newNetworksMask;
nw = &(_networks[(unsigned long)(nwidHashed & newNetworksMask)]);
}
nw->set(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr)
{
const uint64_t nwidHashed = nwid + (nwid >> 32U);
ZT_VirtualNetworkConfig ctmp;
void **nUserPtr = (void **)0;
{
RWMutex::RLock l(_networks_m);
SharedPtr<Network> &nw = _networks[(unsigned long)(nwidHashed & _networksMask)];
if (!nw)
return ZT_RESULT_OK;
if (uptr)
*uptr = nw->userPtr();
nw->externalConfig(&ctmp);
nw->destroy();
nUserPtr = nw->userPtr();
}
if (nUserPtr)
RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
{
RWMutex::Lock _l(_networks_m);
_networks[(unsigned long)(nwidHashed & _networksMask)].zero();
}
uint64_t tmp[2];
tmp[0] = nwid; tmp[1] = 0;
RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::addRoot(void *tptr,const ZT_Identity *identity,const sockaddr_storage *bootstrap)
{
if (!identity)
return ZT_RESULT_ERROR_BAD_PARAMETER;
InetAddress a;
if (bootstrap)
a = bootstrap;
RR->topology->addRoot(tptr,*reinterpret_cast<const Identity *>(identity),a);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::removeRoot(void *tptr,const ZT_Identity *identity)
{
if (!identity)
return ZT_RESULT_ERROR_BAD_PARAMETER;
RR->topology->removeRoot(*reinterpret_cast<const Identity *>(identity));
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->identity = reinterpret_cast<const ZT_Identity *>(&RR->identity);
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = _online ? 1 : 0;
}
struct _sortPeerPtrsByAddress { inline bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b) const { return (a->address() < b->address()); } };
ZT_PeerList *Node::peers() const
{
std::vector< SharedPtr<Peer> > peers;
RR->topology->getAllPeers(peers);
std::sort(peers.begin(),peers.end(),_sortPeerPtrsByAddress());
char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()) + (sizeof(Identity) * peers.size()));
if (!buf)
return (ZT_PeerList *)0;
ZT_PeerList *pl = (ZT_PeerList *)buf;
pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
Identity *identities = (Identity *)(buf + sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
const int64_t now = _now;
pl->peerCount = 0;
for(std::vector< SharedPtr<Peer> >::iterator pi(peers.begin());pi!=peers.end();++pi) {
ZT_Peer *p = &(pl->peers[pl->peerCount]);
p->address = (*pi)->address().toInt();
identities[pl->peerCount] = (*pi)->identity(); // need to make a copy in case peer gets deleted
p->identity = &identities[pl->peerCount];
memcpy(p->identityHash,(*pi)->identity().hash(),sizeof(p->identityHash));
if ((*pi)->remoteVersionKnown()) {
p->versionMajor = (int)(*pi)->remoteVersionMajor();
p->versionMinor = (int)(*pi)->remoteVersionMinor();
p->versionRev = (int)(*pi)->remoteVersionRevision();
} else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = (int)(*pi)->latency();
if (p->latency >= 0xffff)
p->latency = -1;
p->root = RR->topology->isRoot((*pi)->identity()) ? 1 : 0;
memcpy(&p->bootstrap,&((*pi)->bootstrap()),sizeof(sockaddr_storage));
std::vector< SharedPtr<Path> > paths;
(*pi)->getAllPaths(paths);
p->pathCount = 0;
for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) {
memcpy(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage));
p->paths[p->pathCount].lastSend = (*path)->lastOut();
p->paths[p->pathCount].lastReceive = (*path)->lastIn();
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
p->paths[p->pathCount].alive = (*path)->alive(now) ? 1 : 0;
p->paths[p->pathCount].preferred = (p->pathCount == 0) ? 1 : 0;
++p->pathCount;
}
++pl->peerCount;
}
return pl;
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
SharedPtr<Network> nw(network(nwid));
if (nw) {
ZT_VirtualNetworkConfig *const nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
nw->externalConfig(nc);
return nc;
}
return (ZT_VirtualNetworkConfig *)0;
}
ZT_VirtualNetworkList *Node::networks() const
{
RWMutex::RLock l(_networks_m);
unsigned long networkCount = 0;
for(std::vector< SharedPtr<Network> >::const_iterator i(_networks.begin());i!=_networks.end();++i) {
if ((*i))
++networkCount;
}
char *const buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * networkCount));
if (!buf)
return (ZT_VirtualNetworkList *)0;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
for(std::vector< SharedPtr<Network> >::const_iterator i(_networks.begin());i!=_networks.end();++i) {
if ((*i))
(*i)->externalConfig(&(nl->networks[nl->networkCount++]));
}
return nl;
}
void Node::setNetworkUserPtr(uint64_t nwid,void *ptr)
{
SharedPtr<Network> nw(network(nwid));
if (nw)
*(nw->userPtr()) = ptr;
}
void Node::freeQueryResult(void *qr)
{
if (qr)
::free(qr);
}
void Node::setInterfaceAddresses(const ZT_InterfaceAddress *addrs,unsigned int addrCount)
{
Mutex::Lock _l(_localInterfaceAddresses_m);
_localInterfaceAddresses.clear();
for(unsigned int i=0;i<addrCount;++i) {
if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(&addrs[i].address)))) {
bool dupe = false;
for(unsigned int j=0;j<i;++j) {
if (*(reinterpret_cast<const InetAddress *>(&addrs[j].address)) == *(reinterpret_cast<const InetAddress *>(&addrs[i].address))) {
dupe = true;
break;
}
}
if (!dupe)
_localInterfaceAddresses.push_back(addrs[i]);
}
}
}
int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data,len);
outp.compress();
RR->sw->send(tptr,outp,true);
return 1;
}
} catch ( ... ) {}
return 0;
}
void Node::setController(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
if (networkControllerInstance)
RR->localNetworkController->init(RR->identity,this);
}
/****************************************************************************/
/* Node methods used only within node/ */
/****************************************************************************/
std::vector<uint8_t> Node::stateObjectGet(void *const tPtr,ZT_StateObjectType type,const uint64_t id[2])
{
std::vector<uint8_t> r;
if (_cb.stateGetFunction) {
void *data = 0;
void (*freeFunc)(void *) = 0;
int l = _cb.stateGetFunction(
reinterpret_cast<ZT_Node *>(this),
_uPtr,
tPtr,
type,
id,
&data,
&freeFunc);
if ((l > 0)&&(data)&&(freeFunc)) {
r.assign(reinterpret_cast<const uint8_t *>(data),reinterpret_cast<const uint8_t *>(data) + l);
freeFunc(data);
}
}
return r;
}
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Identity &id,const int64_t localSocket,const InetAddress &remoteAddress)
{
if (Path::isAddressValidForPath(remoteAddress)) {
RWMutex::RLock l(_networks_m);
for(std::vector< SharedPtr<Network> >::iterator i(_networks.begin());i!=_networks.end();++i) {
if ((*i)) {
for(unsigned int k=0,j=(*i)->config().staticIpCount;k<j;++k) {
if ((*i)->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
} else {
return false;
}
if (_cb.pathCheckFunction) {
return (_cb.pathCheckFunction(
reinterpret_cast<ZT_Node *>(this),
_uPtr,
tPtr,
id.address().toInt(),
(const ZT_Identity *)&id,
localSocket,
reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0);
}
return true;
}
bool Node::externalPathLookup(void *tPtr,const Identity &id,int family,InetAddress &addr)
{
if (_cb.pathLookupFunction) {
return (_cb.pathLookupFunction(
reinterpret_cast<ZT_Node *>(this),
_uPtr,
tPtr,
id.address().toInt(),
reinterpret_cast<const ZT_Identity *>(&id),
family,
reinterpret_cast<sockaddr_storage *>(&addr)) == ZT_RESULT_OK);
}
return false;
}
ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
{
RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig);
return ZT_RESULT_OK;
}
bool Node::localControllerHasAuthorized(const int64_t now,const uint64_t nwid,const Address &addr) const
{
_localControllerAuthorizations_m.lock();
const int64_t *const at = _localControllerAuthorizations.get(_LocalControllerAuth(nwid,addr));
_localControllerAuthorizations_m.unlock();
if (at)
return ((now - *at) < (ZT_NETWORK_AUTOCONF_DELAY * 3));
return false;
}
void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
{
_localControllerAuthorizations_m.lock();
_localControllerAuthorizations[_LocalControllerAuth(nwid,destination)] = now();
_localControllerAuthorizations_m.unlock();
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
n->setConfiguration((void *)0,nc,true);
} else {
ScopedPtr< Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> > dconf(new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>());
if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
uint64_t configUpdateId = Utils::random();
if (!configUpdateId) ++configUpdateId;
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
uint8_t sig[256];
const unsigned int siglen = RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig));
outp.append((uint8_t)1);
outp.append((uint16_t)siglen);
outp.append(sig,siglen);
outp.compress();
RR->sw->send((void *)0,outp,true);
chunkIndex += chunkLen;
}
}
}
}
void Node::ncSendRevocation(const Address &destination,const Revocation &rev)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(rev.networkId()));
if (!n) return;
n->addCredential((void *)0,RR->identity,rev);
} else {
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void *)0,outp,true);
}
}
void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
switch(errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound();
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied();
break;
default: break;
}
} else if (requestPacketId) {
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
}
outp.append(nwid);
RR->sw->send((void *)0,outp,true);
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
/****************************************************************************/
/* CAPI bindings */
/****************************************************************************/
extern "C" {
enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr,tptr,callbacks,now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node,void *tPtr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->shutdown(tPtr);
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_addRoot(ZT_Node *node,void *tptr,const ZT_Identity *identity,const struct sockaddr_storage *bootstrap)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addRoot(tptr,identity,bootstrap);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_removeRoot(ZT_Node *node,void *tptr,const ZT_Identity *identity)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->removeRoot(tptr,identity);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
const ZT_Identity *ZT_Node_identity(ZT_Node *node)
{
return (const ZT_Identity *)(&(reinterpret_cast<ZeroTier::Node *>(node)->identity()));
}
void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch ( ... ) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch ( ... ) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch ( ... ) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch ( ... ) {
return (ZT_VirtualNetworkList *)0;
}
}
void ZT_Node_setNetworkUserPtr(ZT_Node *node,uint64_t nwid,void *ptr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetworkUserPtr(nwid,ptr);
} catch ( ... ) {}
}
void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
} catch ( ... ) {}
}
void ZT_Node_setInterfaceAddresses(ZT_Node *node,const ZT_InterfaceAddress *addrs,unsigned int addrCount)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setInterfaceAddresses(addrs,addrCount);
} catch ( ... ) {}
}
int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr,dest,typeId,data,len);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_setController(ZT_Node *node,void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setController(networkControllerInstance);
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_version(int *major,int *minor,int *revision)
{
if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
}
} // extern "C"