ZeroTierOne/node/Topology.cpp

263 lines
6.6 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Topology.hpp"
namespace ZeroTier {
const uint64_t Topology::s_pathHashSalt = Utils::getSecureRandomU64();
// Sorts roots so as to put the lowest latency alive root first.
struct _RootSortComparisonOperator
{
ZT_ALWAYS_INLINE _RootSortComparisonOperator(const int64_t now) : _now(now) {}
ZT_ALWAYS_INLINE bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b)
{
const int64_t now = _now;
if (a->active(now)) {
if (b->active(now))
return (a->latency() < b->latency());
return true;
}
return a->lastReceive() < b->lastReceive();
}
const int64_t _now;
};
Topology::Topology(const RuntimeEnvironment *renv,const Identity &myId,void *tPtr) :
RR(renv),
_myIdentity(myId),
_numConfiguredPhysicalPaths(0),
_peers(128),
_paths(256)
{
uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0;
std::vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_ROOTS,idtmp));
if (!data.empty()) {
uint8_t *dptr = data.data();
int drem = (int)data.size();
while (drem > 0) {
Identity id;
int l = id.unmarshal(dptr,drem);
if (l > 0) {
_roots.insert(id);
dptr += l;
drem -= l;
}
}
}
for(std::set<Identity>::const_iterator r(_roots.begin());r!=_roots.end();++r) {
SharedPtr<Peer> p;
_loadCached(tPtr,r->address(),p);
if ((!p)||(p->identity() != *r)) {
p.set(new Peer(RR));
p->init(myId,*r);
}
_rootPeers.push_back(p);
}
}
Topology::~Topology()
{
}
SharedPtr<Peer> Topology::add(void *tPtr,const SharedPtr<Peer> &peer)
{
RWMutex::Lock _l(_peers_l);
SharedPtr<Peer> &hp = _peers[peer->address()];
if (hp)
return hp;
_loadCached(tPtr,peer->address(),hp);
if (hp) {
_peersByIncomingProbe[peer->incomingProbe()] = hp;
return hp;
}
hp = peer;
_peersByIncomingProbe[peer->incomingProbe()] = peer;
return peer;
}
void Topology::getAllPeers(std::vector< SharedPtr<Peer> > &allPeers) const
{
RWMutex::RLock l(_peers_l);
allPeers.clear();
allPeers.reserve(_peers.size());
Hashtable< Address,SharedPtr<Peer> >::Iterator i(*(const_cast<Hashtable< Address,SharedPtr<Peer> > *>(&_peers)));
Address *a = nullptr;
SharedPtr<Peer> *p = nullptr;
while (i.next(a,p))
allPeers.push_back(*p);
}
void Topology::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
if (!pathNetwork) {
_numConfiguredPhysicalPaths = 0;
} else {
std::map<InetAddress,ZT_PhysicalPathConfiguration> cpaths;
for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i)
cpaths[_physicalPathConfig[i].first] = _physicalPathConfig[i].second;
if (pathConfig) {
ZT_PhysicalPathConfiguration pc(*pathConfig);
if (pc.mtu <= 0)
pc.mtu = ZT_DEFAULT_PHYSMTU;
else if (pc.mtu < ZT_MIN_PHYSMTU)
pc.mtu = ZT_MIN_PHYSMTU;
else if (pc.mtu > ZT_MAX_PHYSMTU)
pc.mtu = ZT_MAX_PHYSMTU;
cpaths[*(reinterpret_cast<const InetAddress *>(pathNetwork))] = pc;
} else {
cpaths.erase(*(reinterpret_cast<const InetAddress *>(pathNetwork)));
}
unsigned int cnt = 0;
for(std::map<InetAddress,ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin());((i!=cpaths.end())&&(cnt<ZT_MAX_CONFIGURABLE_PATHS));++i) {
_physicalPathConfig[cnt].first = i->first;
_physicalPathConfig[cnt].second = i->second;
++cnt;
}
_numConfiguredPhysicalPaths = cnt;
}
}
void Topology::addRoot(void *tPtr,const Identity &id,const InetAddress &bootstrap)
{
if (id == _myIdentity) return; // sanity check
RWMutex::Lock l1(_peers_l);
std::pair< std::set<Identity>::iterator,bool > ir(_roots.insert(id));
if (ir.second) {
SharedPtr<Peer> &p = _peers[id.address()];
if (!p) {
p.set(new Peer(RR));
p->init(_myIdentity,id);
if (bootstrap)
p->setBootstrap(Endpoint(bootstrap));
}
_rootPeers.push_back(p);
uint8_t *const roots = (uint8_t *)malloc(ZT_IDENTITY_MARSHAL_SIZE_MAX * _roots.size());
if (roots) {
int p = 0;
for(std::set<Identity>::const_iterator i(_roots.begin());i!=_roots.end();++i) {
int pp = i->marshal(roots + p,false);
if (pp > 0)
p += pp;
}
uint64_t id[2];
id[0] = 0;
id[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_ROOTS,id,roots,(unsigned int)p);
free(roots);
}
}
}
bool Topology::removeRoot(const Identity &id)
{
RWMutex::Lock l1(_peers_l);
std::set<Identity>::iterator r(_roots.find(id));
if (r != _roots.end()) {
for(std::vector< SharedPtr<Peer> >::iterator p(_rootPeers.begin());p!=_rootPeers.end();++p) {
if ((*p)->identity() == id) {
_rootPeers.erase(p);
break;
}
}
_roots.erase(r);
return true;
}
return false;
}
void Topology::rankRoots(const int64_t now)
{
RWMutex::Lock l1(_peers_l);
std::sort(_rootPeers.begin(),_rootPeers.end(),_RootSortComparisonOperator(now));
}
void Topology::doPeriodicTasks(void *tPtr,const int64_t now)
{
{
RWMutex::Lock l1(_peers_l);
Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
Address *a = nullptr;
SharedPtr<Peer> *p = nullptr;
while (i.next(a,p)) {
if ( (!(*p)->alive(now)) && (_roots.count((*p)->identity()) == 0) ) {
(*p)->save(tPtr);
_peersByIncomingProbe.erase((*p)->incomingProbe());
_peers.erase(*a);
}
}
}
{
RWMutex::Lock l1(_paths_l);
Hashtable< uint64_t,SharedPtr<Path> >::Iterator i(_paths);
uint64_t *k = nullptr;
SharedPtr<Path> *p = nullptr;
while (i.next(k,p)) {
if (p->references() <= 1)
_paths.erase(*k);
}
}
}
void Topology::saveAll(void *tPtr)
{
RWMutex::RLock l(_peers_l);
Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
Address *a = nullptr;
SharedPtr<Peer> *p = nullptr;
while (i.next(a,p)) {
if ( (!(*p)->alive(RR->node->now())) && (_roots.count((*p)->identity()) == 0) ) {
(*p)->save((void *)0);
}
}
}
void Topology::_loadCached(void *tPtr,const Address &zta,SharedPtr<Peer> &peer)
{
try {
uint64_t id[2];
id[0] = zta.toInt();
id[1] = 0;
std::vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PEER,id));
if (!data.empty()) {
const uint8_t *d = data.data();
int dl = (int)data.size();
for (;;) {
Peer *const p = new Peer(RR);
int n = p->unmarshal(d,dl);
if (n > 0) {
// TODO: will eventually handle multiple peers
peer.set(p);
return;
} else {
delete p;
}
}
}
} catch ( ... ) {
peer.zero();
}
}
} // namespace ZeroTier