Simplify key queue, fix macOS issues with bindings, and no need to cache PSK forever.

This commit is contained in:
Adam Ierymenko 2023-03-10 09:39:47 -05:00
parent d170d91b8e
commit a69199607c
6 changed files with 146 additions and 138 deletions

View file

@ -3,7 +3,7 @@
// MacOS implementation of AES primitives since CommonCrypto seems to be faster than OpenSSL, especially on ARM64.
use std::os::raw::{c_int, c_void};
use std::ptr::{null, null_mut};
use std::sync::Mutex;
use std::sync::atomic::AtomicPtr;
use crate::secret::Secret;
use crate::secure_eq;
@ -172,14 +172,26 @@ impl AesGcm<false> {
}
}
pub struct Aes(Mutex<*mut c_void>, Mutex<*mut c_void>);
pub struct Aes(AtomicPtr<c_void>, AtomicPtr<c_void>);
impl Drop for Aes {
#[inline(always)]
fn drop(&mut self) {
unsafe {
CCCryptorRelease(*self.0.lock().unwrap());
CCCryptorRelease(*self.1.lock().unwrap());
loop {
let p = self.0.load(std::sync::atomic::Ordering::Acquire);
if !p.is_null() {
CCCryptorRelease(p);
break;
}
}
loop {
let p = self.1.load(std::sync::atomic::Ordering::Acquire);
if !p.is_null() {
CCCryptorRelease(p);
break;
}
}
}
}
}
@ -191,7 +203,7 @@ impl Aes {
KEY_SIZE == 32 || KEY_SIZE == 24 || KEY_SIZE == 16,
"AES supports 128, 192, or 256 bits keys"
);
let aes: Self = std::mem::zeroed();
let (mut p0, mut p1) = (null_mut(), null_mut());
assert_eq!(
CCCryptorCreateWithMode(
kCCEncrypt,
@ -205,7 +217,7 @@ impl Aes {
0,
0,
kCCOptionECBMode,
&mut *aes.0.lock().unwrap()
&mut p0,
),
0
);
@ -222,11 +234,11 @@ impl Aes {
0,
0,
kCCOptionECBMode,
&mut *aes.1.lock().unwrap()
&mut p1,
),
0
);
aes
Self(AtomicPtr::new(p0), AtomicPtr::new(p1))
}
}
@ -235,8 +247,16 @@ impl Aes {
assert_eq!(data.len(), 16);
unsafe {
let mut data_out_written = 0;
let e = self.0.lock().unwrap();
CCCryptorUpdate(*e, data.as_ptr().cast(), 16, data.as_mut_ptr().cast(), 16, &mut data_out_written);
loop {
let p = self.0.load(std::sync::atomic::Ordering::Acquire);
if !p.is_null() {
CCCryptorUpdate(p, data.as_ptr().cast(), 16, data.as_mut_ptr().cast(), 16, &mut data_out_written);
self.0.store(p, std::sync::atomic::Ordering::Release);
break;
} else {
std::thread::yield_now();
}
}
}
}
@ -245,8 +265,16 @@ impl Aes {
assert_eq!(data.len(), 16);
unsafe {
let mut data_out_written = 0;
let d = self.1.lock().unwrap();
CCCryptorUpdate(*d, data.as_ptr().cast(), 16, data.as_mut_ptr().cast(), 16, &mut data_out_written);
loop {
let p = self.1.load(std::sync::atomic::Ordering::Acquire);
if !p.is_null() {
CCCryptorUpdate(p, data.as_ptr().cast(), 16, data.as_mut_ptr().cast(), 16, &mut data_out_written);
self.1.store(p, std::sync::atomic::Ordering::Release);
break;
} else {
std::thread::yield_now();
}
}
}
}
}

View file

@ -1,16 +1,16 @@
// (c) 2020-2022 ZeroTier, Inc. -- currently proprietary pending actual release and licensing. See LICENSE.md.
use std::{ptr, mem::MaybeUninit};
use std::{mem::MaybeUninit, ptr};
use foreign_types::ForeignType;
use crate::{secret::Secret, cipher_ctx::CipherCtx};
use crate::{cipher_ctx::CipherCtx, secret::Secret};
/// An OpenSSL AES_GCM context. Automatically frees itself on drop.
/// The current interface is custom made for ZeroTier, but could easily be adapted for other uses.
/// Whether `ENCRYPT` is true or false decides respectively whether this context encrypts or decrypts.
/// Even though OpenSSL lets you set this dynamically almost no operations work when you do this without resetting the context.
pub struct AesGcm<const ENCRYPT: bool> (CipherCtx);
pub struct AesGcm<const ENCRYPT: bool>(CipherCtx);
impl<const ENCRYPT: bool> AesGcm<ENCRYPT> {
/// Create an AesGcm context with the given key, key must be 16, 24 or 32 bytes long.
@ -22,7 +22,7 @@ impl<const ENCRYPT: bool> AesGcm<ENCRYPT> {
16 => ffi::EVP_aes_128_gcm(),
24 => ffi::EVP_aes_192_gcm(),
32 => ffi::EVP_aes_256_gcm(),
_ => panic!("Aes KEY_SIZE must be 16, 24 or 32")
_ => panic!("Aes KEY_SIZE must be 16, 24 or 32"),
};
ctx.cipher_init::<ENCRYPT>(t, key.as_ptr(), ptr::null()).unwrap();
ffi::EVP_CIPHER_CTX_set_padding(ctx.as_ptr(), 0);
@ -103,7 +103,7 @@ impl Aes {
16 => ffi::EVP_aes_128_ecb(),
24 => ffi::EVP_aes_192_ecb(),
32 => ffi::EVP_aes_256_ecb(),
_ => panic!("Aes KEY_SIZE must be 16, 24 or 32")
_ => panic!("Aes KEY_SIZE must be 16, 24 or 32"),
};
ctx0.cipher_init::<true>(t, key.as_ptr(), ptr::null()).unwrap();
ffi::EVP_CIPHER_CTX_set_padding(ctx0.as_ptr(), 0);
@ -117,14 +117,23 @@ impl Aes {
/// Do not ever encrypt the same plaintext twice. Make sure data is always different between calls.
#[inline(always)]
pub fn encrypt_block_in_place(&self, data: &mut [u8]) {
debug_assert_eq!(data.len(), AES_BLOCK_SIZE, "AesEcb should not be used to encrypt more than one block at a time unless you really know what you are doing.");
debug_assert_eq!(
data.len(),
AES_BLOCK_SIZE,
"AesEcb should not be used to encrypt more than one block at a time unless you really know what you are doing."
);
let ptr = data.as_mut_ptr();
unsafe { self.0.update::<true>(data, ptr).unwrap() }
}
/// Do not ever encrypt the same plaintext twice. Make sure data is always different between calls.
#[inline(always)]
pub fn decrypt_block_in_place(&self, data: &mut [u8]) {
debug_assert_eq!(data.len(), AES_BLOCK_SIZE, "AesEcb should not be used to encrypt more than one block at a time unless you really know what you are doing.");
debug_assert_eq!(
data.len(),
AES_BLOCK_SIZE,
"AesEcb should not be used to encrypt more than one block at a time unless you really know what you are doing."
);
let ptr = data.as_mut_ptr();
unsafe { self.1.update::<false>(data, ptr).unwrap() }
}

View file

@ -1,8 +1,7 @@
use std::ptr;
use crate::error::{ErrorStack, cvt_p, cvt};
use foreign_types::{ForeignType, foreign_type, ForeignTypeRef};
use crate::error::{cvt, cvt_p, ErrorStack};
use foreign_types::{foreign_type, ForeignType, ForeignTypeRef};
use libc::c_int;
foreign_type! {
@ -22,23 +21,19 @@ impl CipherCtx {
}
}
impl CipherCtxRef {
/// Initializes the context for encryption or decryption.
/// All pointer fields can be null, in which case the corresponding field in the context is not updated.
pub unsafe fn cipher_init<const ENCRYPT: bool>(&self, t: *const ffi::EVP_CIPHER, key: *const u8, iv: *const u8) -> Result<(), ErrorStack>{
let evp_f = if ENCRYPT { ffi::EVP_EncryptInit_ex } else { ffi::EVP_DecryptInit_ex };
pub unsafe fn cipher_init<const ENCRYPT: bool>(&self, t: *const ffi::EVP_CIPHER, key: *const u8, iv: *const u8) -> Result<(), ErrorStack> {
let evp_f = if ENCRYPT {
ffi::EVP_EncryptInit_ex
} else {
ffi::EVP_DecryptInit_ex
};
cvt(evp_f(
self.as_ptr(),
t,
ptr::null_mut(),
key,
iv,
))?;
cvt(evp_f(self.as_ptr(), t, ptr::null_mut(), key, iv))?;
Ok(())
}
/// Writes data into the context.
///
/// Providing no output buffer will cause the input to be considered additional authenticated data (AAD).
@ -54,27 +49,20 @@ impl CipherCtxRef {
/// ciphers the output buffer size should be at least as big as
/// the input buffer. For block ciphers the size of the output
/// buffer depends on the state of partially updated blocks.
pub unsafe fn update<const ENCRYPT: bool>(
&self,
input: &[u8],
output: *mut u8,
) -> Result<(), ErrorStack> {
let evp_f = if ENCRYPT { ffi::EVP_EncryptUpdate } else { ffi::EVP_DecryptUpdate };
pub unsafe fn update<const ENCRYPT: bool>(&self, input: &[u8], output: *mut u8) -> Result<(), ErrorStack> {
let evp_f = if ENCRYPT {
ffi::EVP_EncryptUpdate
} else {
ffi::EVP_DecryptUpdate
};
let mut outlen = 0;
cvt(evp_f(
self.as_ptr(),
output,
&mut outlen,
input.as_ptr(),
input.len() as c_int,
))?;
cvt(evp_f(self.as_ptr(), output, &mut outlen, input.as_ptr(), input.len() as c_int))?;
Ok(())
}
/// Finalizes the encryption or decryption process.
///
/// Any remaining data will be written to the output buffer.
@ -88,18 +76,15 @@ impl CipherCtxRef {
/// large enough to contain correct number of bytes. For streaming
/// ciphers the output buffer can be empty, for block ciphers the
/// output buffer should be at least as big as the block.
pub unsafe fn finalize<const ENCRYPT: bool>(
&self,
output: *mut u8,
) -> Result<(), ErrorStack> {
let evp_f = if ENCRYPT { ffi::EVP_EncryptFinal_ex } else { ffi::EVP_DecryptFinal_ex };
pub unsafe fn finalize<const ENCRYPT: bool>(&self, output: *mut u8) -> Result<(), ErrorStack> {
let evp_f = if ENCRYPT {
ffi::EVP_EncryptFinal_ex
} else {
ffi::EVP_DecryptFinal_ex
};
let mut outl = 0;
cvt(evp_f(
self.as_ptr(),
output,
&mut outl,
))?;
cvt(evp_f(self.as_ptr(), output, &mut outl))?;
Ok(())
}
@ -111,7 +96,6 @@ impl CipherCtxRef {
/// The size of the buffer indicates the size of the tag. While some ciphers support a range of tag sizes, it is
/// recommended to pick the maximum size.
pub fn tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.as_ptr(),
@ -125,6 +109,7 @@ impl CipherCtxRef {
}
/// Sets the authentication tag for verification during decryption.
#[allow(unused)]
pub fn set_tag(&self, tag: &[u8]) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
@ -141,8 +126,8 @@ impl CipherCtxRef {
#[cfg(test)]
mod test {
use crate::init;
use super::*;
use crate::init;
#[test]
fn aes_128_ecb() {

View file

@ -1,24 +1,26 @@
mod error;
mod cipher_ctx;
mod bn;
mod cipher_ctx;
mod ec;
mod error;
pub mod secret;
pub mod random;
pub mod hash;
pub mod mimcvdf;
pub mod p384;
pub mod random;
pub mod secret;
pub mod poly1305;
pub mod salsa;
pub mod typestate;
pub mod x25519;
#[cfg(target_os = "macos")]
pub mod aes_fruity;
pub mod aes_openssl;
#[cfg(target_os = "macos")]
pub use aes_fruity as aes;
#[cfg(not(target_os = "macos"))]
pub mod aes_openssl;
#[cfg(not(target_os = "macos"))]
pub use aes_openssl as aes;
@ -31,9 +33,6 @@ pub use aes_gmac_siv_fruity as aes_gmac_siv;
#[cfg(not(target_os = "macos"))]
pub use aes_gmac_siv_openssl as aes_gmac_siv;
/// This must be called before using any function from this library.
pub fn init() {
ffi::init();

View file

@ -46,7 +46,7 @@ fn alice_main(
alice_out: mpsc::SyncSender<Vec<u8>>,
alice_in: mpsc::Receiver<Vec<u8>>,
) {
let context = zssp::Context::<TestApplication>::new(16);
let context = zssp::Context::<TestApplication>::new(16, TEST_MTU);
let mut data_buf = [0u8; 65536];
let mut next_service = ms_monotonic() + 500;
let mut last_ratchet_count = 0;
@ -88,7 +88,6 @@ fn alice_main(
&0,
&mut data_buf,
pkt,
TEST_MTU,
current_time,
) {
Ok(zssp::ReceiveResult::Ok(_)) => {
@ -144,7 +143,6 @@ fn alice_main(
|_, b| {
let _ = alice_out.send(b.to_vec());
},
TEST_MTU,
current_time,
);
}
@ -159,7 +157,7 @@ fn bob_main(
bob_out: mpsc::SyncSender<Vec<u8>>,
bob_in: mpsc::Receiver<Vec<u8>>,
) {
let context = zssp::Context::<TestApplication>::new(16);
let context = zssp::Context::<TestApplication>::new(16, TEST_MTU);
let mut data_buf = [0u8; 65536];
let mut data_buf_2 = [0u8; TEST_MTU];
let mut last_ratchet_count = 0;
@ -186,7 +184,6 @@ fn bob_main(
&0,
&mut data_buf,
pkt,
TEST_MTU,
current_time,
) {
Ok(zssp::ReceiveResult::Ok(_)) => {
@ -246,7 +243,6 @@ fn bob_main(
|_, b| {
let _ = bob_out.send(b.to_vec());
},
TEST_MTU,
current_time,
);
}

View file

@ -11,7 +11,7 @@
use std::collections::{HashMap, HashSet};
use std::num::NonZeroU64;
use std::sync::atomic::{AtomicI64, AtomicU64, Ordering};
use std::sync::atomic::{AtomicI64, AtomicU64, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex, MutexGuard, RwLock, Weak};
use zerotier_crypto::aes::{Aes, AesGcm};
@ -28,12 +28,15 @@ use crate::fragged::Fragged;
use crate::proto::*;
use crate::sessionid::SessionId;
const GCM_CIPHER_POOL_SIZE: usize = 4;
/// Session context for local application.
///
/// Each application using ZSSP must create an instance of this to own sessions and
/// defragment incoming packets that are not yet associated with a session.
pub struct Context<Application: ApplicationLayer> {
max_incomplete_session_queue_size: usize,
default_physical_mtu: AtomicUsize,
defrag: Mutex<
HashMap<
(Application::PhysicalPath, u64),
@ -52,7 +55,7 @@ struct SessionsById<Application: ApplicationLayer> {
active: HashMap<SessionId, Weak<Session<Application>>>,
// Incomplete sessions in the middle of three-phase Noise_XK negotiation, expired after timeout.
incoming: HashMap<SessionId, Arc<BobIncomingIncompleteSessionState>>,
incoming: HashMap<SessionId, Arc<IncomingIncompleteSession>>,
}
/// Result generated by the context packet receive function, with possible payloads.
@ -80,7 +83,6 @@ pub struct Session<Application: ApplicationLayer> {
/// An arbitrary application defined object associated with each session
pub application_data: Application::Data,
psk: Secret<BASE_KEY_SIZE>,
send_counter: AtomicU64,
receive_window: [AtomicU64; COUNTER_WINDOW_MAX_OOO],
header_protection_cipher: Aes,
@ -90,13 +92,14 @@ pub struct Session<Application: ApplicationLayer> {
/// Most of the mutable parts of a session state.
struct State {
physical_mtu: usize,
remote_session_id: Option<SessionId>,
keys: [Option<SessionKey>; 2],
current_key: usize,
current_offer: Offer,
}
struct BobIncomingIncompleteSessionState {
struct IncomingIncompleteSession {
timestamp: i64,
alice_session_id: SessionId,
bob_session_id: SessionId,
@ -107,8 +110,9 @@ struct BobIncomingIncompleteSessionState {
bob_noise_e_secret: P384KeyPair,
}
struct AliceOutgoingIncompleteSessionState {
struct OutgoingSessionOffer {
last_retry_time: AtomicI64,
psk: Secret<BASE_KEY_SIZE>,
noise_h: [u8; SHA384_HASH_SIZE],
noise_es: Secret<P384_ECDH_SHARED_SECRET_SIZE>,
alice_noise_e_secret: P384KeyPair,
@ -125,34 +129,33 @@ struct OutgoingSessionAck {
enum Offer {
None,
NoiseXKInit(Box<AliceOutgoingIncompleteSessionState>),
NoiseXKInit(Box<OutgoingSessionOffer>),
NoiseXKAck(Box<OutgoingSessionAck>),
RekeyInit(P384KeyPair, i64),
}
struct SessionKey {
ratchet_key: Secret<BASE_KEY_SIZE>, // Key used in derivation of the next session key
//receive_key: Secret<AES_256_KEY_SIZE>, // Receive side AES-GCM key
//send_key: Secret<AES_256_KEY_SIZE>, // Send side AES-GCM key
receive_cipher_pool: [Mutex<AesGcm<false>>; 4], // Pool of reusable sending ciphers
send_cipher_pool: [Mutex<AesGcm<true>>; 4], // Pool of reusable receiving ciphers
rekey_at_time: i64, // Rekey at or after this time (ticks)
created_at_counter: u64, // Counter at which session was created
rekey_at_counter: u64, // Rekey at or after this counter
expire_at_counter: u64, // Hard error when this counter value is reached or exceeded
ratchet_count: u64, // Number of rekey events
bob: bool, // Was this side "Bob" in this exchange?
confirmed: bool, // Is this key confirmed by the other side?
ratchet_key: Secret<BASE_KEY_SIZE>, // Key used in derivation of the next session key
receive_cipher_pool: [Mutex<AesGcm<false>>; GCM_CIPHER_POOL_SIZE], // Pool of reusable sending ciphers
send_cipher_pool: [Mutex<AesGcm<true>>; GCM_CIPHER_POOL_SIZE], // Pool of reusable receiving ciphers
rekey_at_time: i64, // Rekey at or after this time (ticks)
created_at_counter: u64, // Counter at which session was created
rekey_at_counter: u64, // Rekey at or after this counter
expire_at_counter: u64, // Hard error when this counter value is reached or exceeded
ratchet_count: u64, // Number of rekey events
initiate_rekey: bool, // My turn to initiate rekey next?
confirmed: bool, // Is this key confirmed by the other side yet?
}
impl<Application: ApplicationLayer> Context<Application> {
/// Create a new session context.
///
/// * `max_incomplete_session_queue_size` - Maximum number of incomplete sessions in negotiation phase
pub fn new(max_incomplete_session_queue_size: usize) -> Self {
pub fn new(max_incomplete_session_queue_size: usize, default_physical_mtu: usize) -> Self {
zerotier_crypto::init();
Self {
max_incomplete_session_queue_size,
default_physical_mtu: AtomicUsize::new(default_physical_mtu),
defrag: Mutex::new(HashMap::new()),
sessions: RwLock::new(SessionsById {
active: HashMap::with_capacity(64),
@ -163,12 +166,13 @@ impl<Application: ApplicationLayer> Context<Application> {
/// Perform periodic background service and cleanup tasks.
///
/// This returns the number of milliseconds until it should be called again.
/// This returns the number of milliseconds until it should be called again. The caller should
/// try to satisfy this but small variations in timing of up to +/- a second or two are not
/// a problem.
///
/// * `send` - Function to send packets to remote sessions
/// * `mtu` - Physical MTU
/// * `current_time` - Current monotonic time in milliseconds
pub fn service<SendFunction: FnMut(&Arc<Session<Application>>, &mut [u8])>(&self, mut send: SendFunction, mtu: usize, current_time: i64) -> i64 {
pub fn service<SendFunction: FnMut(&Arc<Session<Application>>, &mut [u8])>(&self, mut send: SendFunction, current_time: i64) -> i64 {
let mut dead_active = Vec::new();
let mut dead_pending = Vec::new();
let retry_cutoff = current_time - Application::RETRY_INTERVAL;
@ -193,7 +197,7 @@ impl<Application: ApplicationLayer> Context<Application> {
let _ = send_with_fragmentation(
|b| send(&session, b),
&mut (offer.init_packet.clone()),
mtu,
state.physical_mtu,
PACKET_TYPE_ALICE_NOISE_XK_INIT,
None,
0,
@ -211,7 +215,7 @@ impl<Application: ApplicationLayer> Context<Application> {
let _ = send_with_fragmentation(
|b| send(&session, b),
&mut (ack.ack.clone())[..ack.ack_size],
mtu,
state.physical_mtu,
PACKET_TYPE_ALICE_NOISE_XK_ACK,
state.remote_session_id,
0,
@ -226,7 +230,8 @@ impl<Application: ApplicationLayer> Context<Application> {
// Check whether we need to rekey if there is no pending offer or if the last rekey
// offer was before retry_cutoff (checked in the 'match' above).
if let Some(key) = state.keys[state.current_key].as_ref() {
if key.bob && (current_time >= key.rekey_at_time || session.send_counter.load(Ordering::Relaxed) >= key.rekey_at_counter)
if key.initiate_rekey
&& (current_time >= key.rekey_at_time || session.send_counter.load(Ordering::Relaxed) >= key.rekey_at_counter)
{
drop(state);
session.initiate_rekey(|b| send(&session, b), current_time);
@ -268,7 +273,7 @@ impl<Application: ApplicationLayer> Context<Application> {
///
/// * `app` - Application layer instance
/// * `send` - User-supplied packet sending function
/// * `mtu` - Physical MTU for calls to send()
/// * `mtu` - Physical MTU for calls to send() for this session (can be changed later)
/// * `remote_s_public_blob` - Remote side's opaque static public blob (which must contain remote_s_public_p384)
/// * `remote_s_public_p384` - Remote side's static public NIST P-384 key
/// * `psk` - Pre-shared key (use all zero if none)
@ -311,16 +316,17 @@ impl<Application: ApplicationLayer> Context<Application> {
let session = Arc::new(Session {
id: local_session_id,
application_data,
psk,
send_counter: AtomicU64::new(3), // 1 and 2 are reserved for init and final ack
receive_window: std::array::from_fn(|_| AtomicU64::new(0)),
header_protection_cipher: Aes::new(&header_protection_key),
state: RwLock::new(State {
physical_mtu: mtu,
remote_session_id: None,
keys: [None, None],
current_key: 0,
current_offer: Offer::NoiseXKInit(Box::new(AliceOutgoingIncompleteSessionState {
current_offer: Offer::NoiseXKInit(Box::new(OutgoingSessionOffer {
last_retry_time: AtomicI64::new(current_time),
psk,
noise_h: mix_hash(&mix_hash(&INITIAL_H, remote_s_public_blob), &alice_noise_e),
noise_es: noise_es.clone(),
alice_noise_e_secret,
@ -385,8 +391,7 @@ impl<Application: ApplicationLayer> Context<Application> {
///
/// The send function may be called one or more times to send packets. If the packet is associated
/// wtth an active session this session is supplied, otherwise this parameter is None and the packet
/// should be a reply to the current incoming packet. The size of packets to be sent will not exceed
/// the supplied mtu.
/// should be a reply to the current incoming packet.
///
/// The check_allow_incoming_session function is called when an initial Noise_XK init message is
/// received. This is before anything is known about the caller. A return value of true proceeds
@ -411,7 +416,6 @@ impl<Application: ApplicationLayer> Context<Application> {
/// * `send` - Function to call to send packets
/// * `data_buf` - Buffer to receive decrypted and authenticated object data (an error is returned if too small)
/// * `incoming_packet_buf` - Buffer containing incoming wire packet (receive() takes ownership)
/// * `mtu` - Physical wire MTU for sending packets
/// * `current_time` - Current monotonic time in milliseconds
pub fn receive<
'b,
@ -427,7 +431,6 @@ impl<Application: ApplicationLayer> Context<Application> {
source: &Application::PhysicalPath,
data_buf: &'b mut [u8],
mut incoming_packet_buf: Application::IncomingPacketBuffer,
mtu: usize,
current_time: i64,
) -> Result<ReceiveResult<'b, Application>, Error> {
let incoming_packet: &mut [u8] = incoming_packet_buf.as_mut();
@ -462,7 +465,6 @@ impl<Application: ApplicationLayer> Context<Application> {
Some(session),
None,
key_index,
mtu,
current_time,
);
} else {
@ -482,7 +484,6 @@ impl<Application: ApplicationLayer> Context<Application> {
Some(session),
None,
key_index,
mtu,
current_time,
);
}
@ -547,7 +548,6 @@ impl<Application: ApplicationLayer> Context<Application> {
None,
incoming,
key_index,
mtu,
current_time,
);
}
@ -564,7 +564,6 @@ impl<Application: ApplicationLayer> Context<Application> {
None,
incoming,
key_index,
mtu,
current_time,
);
}
@ -588,9 +587,8 @@ impl<Application: ApplicationLayer> Context<Application> {
fragments: &[Application::IncomingPacketBuffer],
packet_type: u8,
session: Option<Arc<Session<Application>>>,
incoming: Option<Arc<BobIncomingIncompleteSessionState>>,
incoming: Option<Arc<IncomingIncompleteSession>>,
key_index: usize,
mtu: usize,
current_time: i64,
) -> Result<ReceiveResult<'b, Application>, Error> {
debug_assert!(fragments.len() >= 1);
@ -602,7 +600,7 @@ impl<Application: ApplicationLayer> Context<Application> {
if let Some(session) = session {
let state = session.state.read().unwrap();
if let Some(key) = state.keys[key_index].as_ref() {
let mut c = key.get_receive_cipher();
let mut c = key.get_receive_cipher(incoming_counter);
c.reset_init_gcm(&incoming_message_nonce);
let mut data_len = 0;
@ -804,7 +802,7 @@ impl<Application: ApplicationLayer> Context<Application> {
// Reserve session ID on this side and record incomplete session state.
sessions.incoming.insert(
bob_session_id,
Arc::new(BobIncomingIncompleteSessionState {
Arc::new(IncomingIncompleteSession {
timestamp: current_time,
alice_session_id,
bob_session_id,
@ -823,7 +821,7 @@ impl<Application: ApplicationLayer> Context<Application> {
send_with_fragmentation(
|b| send(None, b),
&mut ack_packet,
mtu,
self.default_physical_mtu.load(Ordering::Relaxed),
PACKET_TYPE_BOB_NOISE_XK_ACK,
Some(alice_session_id),
0,
@ -903,7 +901,7 @@ impl<Application: ApplicationLayer> Context<Application> {
.as_bytes(),
)
.as_bytes(),
hmac_sha512_secret::<BASE_KEY_SIZE>(session.psk.as_bytes(), hk.as_bytes()).as_bytes(),
hmac_sha512_secret::<BASE_KEY_SIZE>(outgoing_offer.psk.as_bytes(), hk.as_bytes()).as_bytes(),
);
let reply_message_nonce = create_message_nonce(PACKET_TYPE_ALICE_NOISE_XK_ACK, 2);
@ -933,7 +931,10 @@ impl<Application: ApplicationLayer> Context<Application> {
assert!(metadata.len() <= (u16::MAX as usize));
reply_len = append_to_slice(&mut reply_buffer, reply_len, &(metadata.len() as u16).to_le_bytes())?;
let noise_h_next = mix_hash(&mix_hash(&noise_h_next, &reply_buffer[HEADER_SIZE..reply_len]), session.psk.as_bytes());
let noise_h_next = mix_hash(
&mix_hash(&noise_h_next, &reply_buffer[HEADER_SIZE..reply_len]),
outgoing_offer.psk.as_bytes(),
);
enc_start = reply_len;
reply_len = append_to_slice(&mut reply_buffer, reply_len, metadata)?;
@ -946,6 +947,8 @@ impl<Application: ApplicationLayer> Context<Application> {
gcm.crypt_in_place(&mut reply_buffer[enc_start..reply_len]);
reply_len = append_to_slice(&mut reply_buffer, reply_len, &gcm.finish_encrypt())?;
let mtu = state.physical_mtu;
drop(state);
{
let mut state = session.state.write().unwrap();
@ -1063,11 +1066,11 @@ impl<Application: ApplicationLayer> Context<Application> {
let session = Arc::new(Session {
id: incoming.bob_session_id,
application_data,
psk,
send_counter: AtomicU64::new(2), // 1 was already used during negotiation
receive_window: std::array::from_fn(|_| AtomicU64::new(0)),
header_protection_cipher: Aes::new(&incoming.header_protection_key),
state: RwLock::new(State {
physical_mtu: self.default_physical_mtu.load(Ordering::Relaxed),
remote_session_id: Some(incoming.alice_session_id),
keys: [
Some(SessionKey::new::<Application>(noise_es_ee_se_hk_psk, 1, current_time, 2, true, true)),
@ -1115,8 +1118,8 @@ impl<Application: ApplicationLayer> Context<Application> {
if let Some(key) = state.keys[key_index].as_ref() {
// Only the current "Alice" accepts rekeys initiated by the current "Bob." These roles
// flip with each rekey event.
if !key.bob {
let mut c = key.get_receive_cipher();
if !key.initiate_rekey {
let mut c = key.get_receive_cipher(incoming_counter);
c.reset_init_gcm(&incoming_message_nonce);
c.crypt_in_place(&mut pkt_assembled[RekeyInit::ENC_START..RekeyInit::AUTH_START]);
let aead_authentication_ok = c.finish_decrypt(&pkt_assembled[RekeyInit::AUTH_START..]);
@ -1202,8 +1205,8 @@ impl<Application: ApplicationLayer> Context<Application> {
if let Offer::RekeyInit(alice_e_secret, _) = &state.current_offer {
if let Some(key) = state.keys[key_index].as_ref() {
// Only the current "Bob" initiates rekeys and expects this ACK.
if key.bob {
let mut c = key.get_receive_cipher();
if key.initiate_rekey {
let mut c = key.get_receive_cipher(incoming_counter);
c.reset_init_gcm(&incoming_message_nonce);
c.crypt_in_place(&mut pkt_assembled[RekeyAck::ENC_START..RekeyAck::AUTH_START]);
let aead_authentication_ok = c.finish_decrypt(&pkt_assembled[RekeyAck::AUTH_START..]);
@ -1555,8 +1558,6 @@ impl SessionKey {
let send_cipher_pool = std::array::from_fn(|_| Mutex::new(AesGcm::new(&send_key)));
Self {
ratchet_key: kbkdf::<BASE_KEY_SIZE, KBKDF_KEY_USAGE_LABEL_RATCHET>(key.as_bytes()),
//receive_key,
//send_key,
receive_cipher_pool,
send_cipher_pool,
rekey_at_time: current_time
@ -1568,31 +1569,21 @@ impl SessionKey {
rekey_at_counter: current_counter.checked_add(Application::REKEY_AFTER_USES).unwrap(),
expire_at_counter: current_counter.checked_add(Application::EXPIRE_AFTER_USES).unwrap(),
ratchet_count,
bob,
initiate_rekey: bob,
confirmed,
}
}
fn get_send_cipher<'a>(&'a self, counter: u64) -> Result<MutexGuard<'a, AesGcm<true>>, Error> {
if counter < self.expire_at_counter {
for mutex in &self.send_cipher_pool {
if let Ok(guard) = mutex.try_lock() {
return Ok(guard);
}
}
Ok(self.send_cipher_pool[0].lock().unwrap())
Ok(self.send_cipher_pool[(counter as usize) % GCM_CIPHER_POOL_SIZE].lock().unwrap())
} else {
Err(Error::MaxKeyLifetimeExceeded)
}
}
fn get_receive_cipher<'a>(&'a self) -> MutexGuard<'a, AesGcm<false>> {
for mutex in &self.receive_cipher_pool {
if let Ok(guard) = mutex.try_lock() {
return guard;
}
}
self.receive_cipher_pool[0].lock().unwrap()
fn get_receive_cipher<'a>(&'a self, counter: u64) -> MutexGuard<'a, AesGcm<false>> {
self.receive_cipher_pool[(counter as usize) % GCM_CIPHER_POOL_SIZE].lock().unwrap()
}
}