ZeroTierOne/root/root.cpp
2024-09-26 19:47:57 -04:00

1493 lines
62 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
/*
* This is a high-throughput minimal root server. It implements only
* those functions of a ZT node that a root must perform and does so
* using highly efficient multithreaded I/O code. It's only been
* thoroughly tested on Linux but should also run on BSDs.
*
* Root configuration file format (JSON):
*
* {
* "name": Name of this root for documentation/UI purposes (string)
* "port": UDP port (int)
* "httpPort": Local HTTP port for basic stats (int)
* "relayMaxHops": Max hops (up to 7)
* "planetFile": Location of planet file for pre-2.x peers (string)
* "statsRoot": If present, path to periodically save stats files (string)
* "s_siblings": [
* {
* "name": Sibling name for UI/documentation purposes (string)
* "id": Full public identity of subling (string)
* "ip": IP address of sibling (string)
* "port": port of subling (for ZeroTier UDP) (int)
* }, ...
* ]
* }
*
* The only required field is port. If statsRoot is present then files
* are periodically written there containing the root's current state.
* It should be a memory filesystem like /dev/shm on Linux as these
* files are large and rewritten frequently and do not need to be
* persisted.
*
* s_siblings are other root servers that should receive packets to peers
* that we can't find. This can occur due to e.g. network topology
* hiccups, IP blockages, etc. s_siblings are used in the order in which
* they appear with the first alive sibling being used.
*/
#include "../ext/cpp-httplib/httplib.h"
#include "../ext/json/json.hpp"
#include "../node/Address.hpp"
#include "../node/CertificateOfMembership.hpp"
#include "../node/Constants.hpp"
#include "../node/Identity.hpp"
#include "../node/InetAddress.hpp"
#include "../node/Meter.hpp"
#include "../node/MulticastGroup.hpp"
#include "../node/Mutex.hpp"
#include "../node/Packet.hpp"
#include "../node/SharedPtr.hpp"
#include "../node/Utils.hpp"
#include "../node/AES.hpp"
#include "../osdep/BlockingQueue.hpp"
#include "../osdep/OSUtils.hpp"
#include "geoip-html.h"
#include <arpa/inet.h>
#include <atomic>
#include <errno.h>
#include <fcntl.h>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <mutex>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <set>
#include <signal.h>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/un.h>
#include <thread>
#include <unistd.h>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace ZeroTier;
using json = nlohmann::json;
#ifdef MSG_DONTWAIT
#define SENDTO_FLAGS MSG_DONTWAIT
#define RECVFROM_FLAGS 0
#else
#define SENDTO_FLAGS 0
#define RECVFROM_FLAGS 0
#endif
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/**
* RootPeer is a normal peer known to this root
*
* This struct must remain memcpy-able. Identity, InetAddress, and
* AtomicCounter all satisfy this. Take care when adding fields that
* this remains true.
*/
struct RootPeer {
ZT_ALWAYS_INLINE RootPeer() : v4s(-1), v6s(-1), lastSend(0), lastReceive(0), lastReceiveV4(0), lastReceiveV6(0), lastEcho(0), lastHello(0), vProto(-1), vMajor(-1), vMinor(-1), vRev(-1), identityValidated(false)
{
}
ZT_ALWAYS_INLINE ~RootPeer()
{
Utils::burn(key, sizeof(key));
}
Identity id; // Identity
uint8_t key[32]; // Shared secret key
InetAddress ip4, ip6; // IPv4 and IPv6 addresses
int v4s, v6s; // IPv4 and IPv6 sockets
int64_t lastSend; // Time of last send (any packet)
int64_t lastReceive; // Time of last receive (any packet)
int64_t lastReceiveV4; // Time of last IPv4 receive
int64_t lastReceiveV6; // Time of last IPv6 receive
int64_t lastEcho; // Time of last received ECHO
int64_t lastHello; // Time of last received HELLO
int vProto; // Protocol version or -1 if unknown
int vMajor, vMinor, vRev; // Peer version or -1,-1,-1 if unknown
bool identityValidated; // Identity has been fully verified
AtomicCounter __refCount;
};
// Hashers for std::unordered_map
struct IdentityHasher {
ZT_ALWAYS_INLINE std::size_t operator()(const Identity& id) const
{
return (std::size_t)id.hashCode();
}
};
struct AddressHasher {
ZT_ALWAYS_INLINE std::size_t operator()(const Address& a) const
{
return (std::size_t)a.toInt();
}
};
struct InetAddressHasher {
ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress& ip) const
{
return (std::size_t)ip.hashCode();
}
};
struct MulticastGroupHasher {
ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup& mg) const
{
return (std::size_t)mg.hashCode();
}
};
// An ordered tuple key representing an introduction of one peer to another
struct RendezvousKey {
RendezvousKey(const Address& aa, const Address& bb)
{
if (aa > bb) {
a = aa;
b = bb;
}
else {
a = bb;
b = aa;
}
}
Address a, b;
ZT_ALWAYS_INLINE bool operator==(const RendezvousKey& k) const
{
return ((a == k.a) && (b == k.b));
}
ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey& k) const
{
return ((a != k.a) || (b != k.b));
}
struct Hasher {
ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey& k) const
{
return (std::size_t)(k.a.toInt() ^ k.b.toInt());
}
};
};
struct RendezvousStats {
RendezvousStats() : count(0), ts(0)
{
}
int64_t count;
int64_t ts;
};
// These fields are not locked as they're only initialized on startup or are atomic
static int64_t s_startTime; // Time service was started
static std::vector<int> s_ports; // Ports to bind for UDP traffic
static int s_relayMaxHops = 0; // Max relay hops
static Identity s_self; // My identity (including secret)
static std::atomic_bool s_run; // Remains true until shutdown is ordered
static json s_config; // JSON config file contents
static std::string s_statsRoot; // Root to write stats, peers, etc.
static std::atomic_bool s_geoInit; // True if geoIP data is initialized
static std::string s_googleMapsAPIKey; // Google maps API key for GeoIP /map feature
// These are only modified during GeoIP database load (if enabled) and become static after s_geoInit is set to true.
static std::map<std::pair<uint32_t, uint32_t>, std::pair<float, float> > s_geoIp4;
static std::map<std::pair<std::array<uint64_t, 2>, std::array<uint64_t, 2> >, std::pair<float, float> > s_geoIp6;
// Rate meters for statistical purposes (locks are internal to Meter)
static Meter s_inputRate;
static Meter s_outputRate;
static Meter s_forwardRate;
static Meter s_discardedForwardRate;
// These fields are locked using mutexes below as they're modified during runtime
static std::string s_planet;
static std::vector<SharedPtr<RootPeer> > s_peers;
static std::vector<SharedPtr<RootPeer> > s_peersToValidate;
static std::unordered_map<uint64_t, std::unordered_map<MulticastGroup, std::unordered_map<Address, int64_t, AddressHasher>, MulticastGroupHasher> > s_multicastSubscriptions;
static std::unordered_map<Address, SharedPtr<RootPeer>, AddressHasher> s_peersByVirtAddr;
static std::unordered_map<RendezvousKey, RendezvousStats, RendezvousKey::Hasher> s_rendezvousTracking;
static std::mutex s_planet_l;
static std::mutex s_peers_l;
static std::mutex s_peersToValidate_l;
static std::mutex s_multicastSubscriptions_l;
static std::mutex s_peersByVirtAddr_l;
static std::mutex s_rendezvousTracking_l;
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// Construct GeoIP key for IPv4 IPs
static ZT_ALWAYS_INLINE uint32_t ip4ToH32(const InetAddress& ip)
{
return Utils::ntoh((uint32_t)(((const struct sockaddr_in*)&ip)->sin_addr.s_addr));
}
// Construct GeoIP key for IPv6 IPs
static ZT_ALWAYS_INLINE std::array<uint64_t, 2> ip6ToH128(const InetAddress& ip)
{
std::array<uint64_t, 2> i128;
memcpy(i128.data(), ip.rawIpData(), 16);
i128[0] = Utils::ntoh(i128[0]);
i128[1] = Utils::ntoh(i128[1]);
return i128;
}
#define ZT_PACKET_IDX_EXTENDED_ARMOR_START 19
static void handlePacket(const int sock, const InetAddress* const ip, Packet& pkt)
{
char ipstr[128], ipstr2[128], astr[32], astr2[32], tmpstr[256];
const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR;
const Address source(pkt.source());
const Address dest(pkt.destination());
const int64_t now = OSUtils::now();
s_inputRate.log(now, pkt.size());
if ((! fragment) && (pkt.size() < ZT_PROTO_MIN_PACKET_LENGTH))
return;
if ((! fragment) && (! pkt.fragmented()) && (dest == s_self.address())) {
SharedPtr<RootPeer> peer;
if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE) && pkt.extendedArmor()) {
if (pkt.size() < (ZT_PROTO_MIN_PACKET_LENGTH + 32)) {
return;
}
uint8_t ephemeralSymmetric[64];
C25519::agree(s_self.c25519SecretKey(), (const uint8_t *)pkt.data() + (pkt.size() - 32), ephemeralSymmetric);
SHA512(ephemeralSymmetric, ephemeralSymmetric, 32);
AES cipher(ephemeralSymmetric);
uint32_t ctrIv[4];
memcpy(ctrIv, pkt.data(), 12);
ctrIv[3] = 0;
cipher.ctr((const uint8_t *)ctrIv, (const uint8_t *)pkt.data() + ZT_PACKET_IDX_EXTENDED_ARMOR_START, (pkt.size() - ZT_PACKET_IDX_EXTENDED_ARMOR_START) - 32, (uint8_t *)pkt.data() + ZT_PACKET_IDX_EXTENDED_ARMOR_START);
pkt.setSize(pkt.size() - 32);
}
// If this is an un-encrypted HELLO, either learn a new peer or verify
// that this is a peer we already know.
if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE) && (pkt.verb() == Packet::VERB_HELLO)) {
Identity id;
if (id.deserialize(pkt, ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) {
{
std::lock_guard<std::mutex> p_l(s_peersByVirtAddr_l);
auto p = s_peersByVirtAddr.find(source);
if (p != s_peersByVirtAddr.end()) {
peer = p->second;
}
}
if (peer) {
if (unlikely(peer->id != id)) {
printf("%s HELLO rejected: identity address collision!" ZT_EOL_S, ip->toString(ipstr));
uint8_t key[48];
if (s_self.agree(id, key)) {
const uint64_t origId = pkt.packetId();
pkt.reset(source, s_self.address(), Packet::VERB_ERROR);
pkt.append((uint8_t)Packet::VERB_HELLO);
pkt.append(origId);
pkt.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION);
pkt.armor(key, true);
sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
}
return;
}
}
else {
peer.set(new RootPeer);
peer->identityValidated = false;
if (! s_self.agree(id, peer->key)) {
printf("%s HELLO rejected: key agreement failed" ZT_EOL_S, ip->toString(ipstr));
return;
}
if (! pkt.dearmor(peer->key)) {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S, ip->toString(ipstr));
return;
}
if (! pkt.uncompress()) {
printf("%s HELLO rejected: decompression failed" ZT_EOL_S, ip->toString(ipstr));
return;
}
peer->id = id;
peer->lastReceive = now;
{
std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
s_peersByVirtAddr[id.address()] = peer;
}
{
std::lock_guard<std::mutex> pl(s_peers_l);
s_peers.emplace_back(peer);
}
{
std::lock_guard<std::mutex> pv(s_peersToValidate_l);
s_peersToValidate.emplace_back(peer);
}
}
}
}
if (! peer) {
{
std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
auto p = s_peersByVirtAddr.find(source);
if (p != s_peersByVirtAddr.end()) {
peer = p->second;
}
}
if (peer) {
if (! pkt.dearmor(peer->key)) {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S, ip->toString(ipstr));
return;
}
if (! pkt.uncompress()) {
printf("%s packet rejected: decompression failed" ZT_EOL_S, ip->toString(ipstr));
return;
}
}
else {
return;
}
}
const int64_t now = OSUtils::now();
if (ip->isV4()) {
peer->ip4 = ip;
peer->v4s = sock;
peer->lastReceiveV4 = now;
if ((now - peer->lastReceiveV6) > ZT_PEER_ACTIVITY_TIMEOUT)
peer->v6s = -1;
}
else if (ip->isV6()) {
peer->ip6 = ip;
peer->v6s = sock;
peer->lastReceiveV6 = now;
if ((now - peer->lastReceiveV4) > ZT_PEER_ACTIVITY_TIMEOUT)
peer->v4s = -1;
}
peer->lastReceive = now;
switch (pkt.verb()) {
case Packet::VERB_HELLO:
try {
if ((now - peer->lastHello) > 250) {
peer->lastHello = now;
peer->vProto = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
peer->vRev = (int)pkt.template at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const uint64_t origId = pkt.packetId();
const uint64_t ts = pkt.template at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
pkt.reset(source, s_self.address(), Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_HELLO);
pkt.append(origId);
pkt.append(ts);
pkt.append((uint8_t)ZT_PROTO_VERSION);
pkt.append((uint8_t)0);
pkt.append((uint8_t)0);
pkt.append((uint16_t)0);
ip->serialize(pkt);
if (peer->vProto < 20) { // send planet file for pre-2.x peers
std::lock_guard<std::mutex> pl(s_planet_l);
if (s_planet.length() > 0) {
pkt.append((uint16_t)s_planet.size());
pkt.append((const uint8_t*)s_planet.data(), s_planet.size());
}
}
pkt.armor(peer->key, true);
sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
s_outputRate.log(now, pkt.size());
peer->lastSend = now;
}
}
catch (...) {
printf("* unexpected exception handling HELLO from %s" ZT_EOL_S, ip->toString(ipstr));
}
break;
case Packet::VERB_ECHO:
try {
if ((now - peer->lastEcho) > 500) {
peer->lastEcho = now;
Packet outp(source, s_self.address(), Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_ECHO);
outp.append(pkt.packetId());
outp.append(((const uint8_t*)pkt.data()) + ZT_PACKET_IDX_PAYLOAD, pkt.size() - ZT_PACKET_IDX_PAYLOAD);
outp.compress();
outp.armor(peer->key, true);
sendto(sock, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
s_outputRate.log(now, outp.size());
peer->lastSend = now;
}
}
catch (...) {
printf("* unexpected exception handling ECHO from %s" ZT_EOL_S, ip->toString(ipstr));
}
case Packet::VERB_WHOIS:
try {
std::vector<SharedPtr<RootPeer> > results;
results.reserve(4);
{
std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; (ptr + ZT_ADDRESS_LENGTH) <= pkt.size(); ptr += ZT_ADDRESS_LENGTH) {
auto p = s_peersByVirtAddr.find(Address(pkt.field(ptr, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH));
if (p != s_peersByVirtAddr.end()) {
results.push_back(p->second);
}
}
}
if (! results.empty()) {
const uint64_t origId = pkt.packetId();
pkt.reset(source, s_self.address(), Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_WHOIS);
pkt.append(origId);
for (auto p = results.begin(); p != results.end(); ++p)
(*p)->id.serialize(pkt, false);
pkt.armor(peer->key, true);
sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
s_outputRate.log(now, pkt.size());
peer->lastSend = now;
}
}
catch (...) {
printf("* unexpected exception handling ECHO from %s" ZT_EOL_S, ip->toString(ipstr));
}
case Packet::VERB_MULTICAST_LIKE:
try {
std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; (ptr + 18) <= pkt.size(); ptr += 18) {
const uint64_t nwid = pkt.template at<uint64_t>(ptr);
const MulticastGroup mg(MAC(pkt.field(ptr + 8, 6), 6), pkt.template at<uint32_t>(ptr + 14));
s_multicastSubscriptions[nwid][mg][source] = now;
}
}
catch (...) {
printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S, ip->toString(ipstr));
}
break;
case Packet::VERB_MULTICAST_GATHER:
try {
const uint64_t nwid = pkt.template at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
// const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC, 6), 6), pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
unsigned int gatherLimit = pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
if (gatherLimit > 255)
gatherLimit = 255;
const uint64_t origId = pkt.packetId();
pkt.reset(source, s_self.address(), Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
pkt.append(origId);
pkt.append(nwid);
mg.mac().appendTo(pkt);
pkt.append((uint32_t)mg.adi());
{
std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
auto forNet = s_multicastSubscriptions.find(nwid);
if (forNet != s_multicastSubscriptions.end()) {
auto forGroup = forNet->second.find(mg);
if (forGroup != forNet->second.end()) {
pkt.append((uint32_t)forGroup->second.size());
const unsigned int countAt = pkt.size();
pkt.addSize(2);
unsigned int l = 0;
for (auto g = forGroup->second.begin(); ((l < gatherLimit) && (g != forGroup->second.end())); ++g) {
if (g->first != source) {
++l;
g->first.appendTo(pkt);
}
}
if (l > 0) {
pkt.setAt<uint16_t>(countAt, (uint16_t)l);
pkt.armor(peer->key, true);
sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
s_outputRate.log(now, pkt.size());
peer->lastSend = now;
}
}
}
}
}
catch (...) {
printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S, ip->toString(ipstr));
}
break;
default:
break;
}
return;
}
// If we made it here, we are forwarding this packet to someone else and also possibly
// sending a RENDEZVOUS message.
int hops = 0;
bool introduce = false;
if (fragment) {
if ((hops = (int)reinterpret_cast<Packet::Fragment*>(&pkt)->incrementHops()) > s_relayMaxHops) {
// printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
s_discardedForwardRate.log(now, pkt.size());
return;
}
}
else {
if ((hops = (int)pkt.incrementHops()) > s_relayMaxHops) {
// printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
s_discardedForwardRate.log(now, pkt.size());
return;
}
if (hops == 1) {
RendezvousKey rk(source, dest);
std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
RendezvousStats& lr = s_rendezvousTracking[rk];
if ((now - lr.ts) >= 30000) {
++lr.count;
lr.ts = now;
introduce = true;
}
}
}
SharedPtr<RootPeer> forwardTo;
{
std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
auto p = s_peersByVirtAddr.find(dest);
if (p != s_peersByVirtAddr.end()) {
forwardTo = p->second;
}
}
if (unlikely(! forwardTo)) {
s_discardedForwardRate.log(now, pkt.size());
return;
}
if (introduce) {
SharedPtr<RootPeer> sourcePeer;
{
std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
auto sp = s_peersByVirtAddr.find(source);
if (sp != s_peersByVirtAddr.end()) {
sourcePeer = sp->second;
}
}
if (likely(sourcePeer)) {
if ((sourcePeer->v6s >= 0) && (forwardTo->v6s >= 0)) {
Packet outp(dest, s_self.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
source.appendTo(outp);
outp.append((uint16_t)sourcePeer->ip6.port());
outp.append((uint8_t)16);
outp.append((const uint8_t*)(sourcePeer->ip6.rawIpData()), 16);
outp.armor(forwardTo->key, true);
sendto(forwardTo->v6s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip6), (socklen_t)sizeof(struct sockaddr_in6));
s_outputRate.log(now, outp.size());
forwardTo->lastSend = now;
outp.reset(source, s_self.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
dest.appendTo(outp);
outp.append((uint16_t)forwardTo->ip6.port());
outp.append((uint8_t)16);
outp.append((const uint8_t*)(forwardTo->ip6.rawIpData()), 16);
outp.armor(sourcePeer->key, true);
sendto(sourcePeer->v6s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(sourcePeer->ip6), (socklen_t)sizeof(struct sockaddr_in6));
s_outputRate.log(now, outp.size());
sourcePeer->lastSend = now;
}
if ((sourcePeer->v4s >= 0) && (forwardTo->v4s >= 0)) {
Packet outp(dest, s_self.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
source.appendTo(outp);
outp.append((uint16_t)sourcePeer->ip4.port());
outp.append((uint8_t)4);
outp.append((const uint8_t*)sourcePeer->ip4.rawIpData(), 4);
outp.armor(forwardTo->key, true);
sendto(forwardTo->v4s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip4), (socklen_t)sizeof(struct sockaddr_in));
s_outputRate.log(now, outp.size());
forwardTo->lastSend = now;
outp.reset(source, s_self.address(), Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0);
dest.appendTo(outp);
outp.append((uint16_t)forwardTo->ip4.port());
outp.append((uint8_t)4);
outp.append((const uint8_t*)(forwardTo->ip4.rawIpData()), 4);
outp.armor(sourcePeer->key, true);
sendto(sourcePeer->v4s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(sourcePeer->ip4), (socklen_t)sizeof(struct sockaddr_in));
s_outputRate.log(now, outp.size());
sourcePeer->lastSend = now;
}
}
}
if (forwardTo->v6s >= 0) {
if (sendto(forwardTo->v6s, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip6), (socklen_t)sizeof(struct sockaddr_in6)) > 0) {
s_outputRate.log(now, pkt.size());
s_forwardRate.log(now, pkt.size());
forwardTo->lastSend = now;
}
}
else if (forwardTo->v4s >= 0) {
if (sendto(forwardTo->v4s, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip4), (socklen_t)sizeof(struct sockaddr_in)) > 0) {
s_outputRate.log(now, pkt.size());
s_forwardRate.log(now, pkt.size());
forwardTo->lastSend = now;
}
}
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
static int bindSocket(struct sockaddr* const bindAddr)
{
const int s = socket(bindAddr->sa_family, SOCK_DGRAM, 0);
if (s < 0) {
close(s);
return -1;
}
int f = 16777216;
while (f > 65536) {
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, (const char*)&f, sizeof(f)) == 0)
break;
f -= 65536;
}
f = 16777216;
while (f > 65536) {
if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, (const char*)&f, sizeof(f)) == 0)
break;
f -= 65536;
}
if (bindAddr->sa_family == AF_INET6) {
f = 1;
setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&f, sizeof(f));
#ifdef IPV6_MTU_DISCOVER
f = 0;
setsockopt(s, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &f, sizeof(f));
#endif
#ifdef IPV6_DONTFRAG
f = 0;
setsockopt(s, IPPROTO_IPV6, IPV6_DONTFRAG, &f, sizeof(f));
#endif
}
#ifdef IP_DONTFRAG
f = 0;
setsockopt(s, IPPROTO_IP, IP_DONTFRAG, &f, sizeof(f));
#endif
#ifdef IP_MTU_DISCOVER
f = IP_PMTUDISC_DONT;
setsockopt(s, IPPROTO_IP, IP_MTU_DISCOVER, &f, sizeof(f));
#endif
/*
#ifdef SO_NO_CHECK
if (bindAddr->sa_family == AF_INET) {
f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
}
#endif
*/
#ifdef SO_REUSEPORT
f = 1;
setsockopt(s, SOL_SOCKET, SO_REUSEPORT, (void*)&f, sizeof(f));
#endif
#ifndef __LINUX__ // linux wants just SO_REUSEPORT
f = 1;
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (void*)&f, sizeof(f));
#endif
#ifdef __LINUX__
struct timeval tv;
tv.tv_sec = 1;
tv.tv_usec = 0;
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, (const void*)&tv, sizeof(tv));
#endif
if (bind(s, bindAddr, (bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
close(s);
// printf("%s\n",strerror(errno));
return -1;
}
return s;
}
static void shutdownSigHandler(int sig)
{
s_run = false;
}
int main(int argc, char** argv)
{
std::vector<std::thread> threads;
std::vector<int> sockets;
int v4Sock = -1, v6Sock = -1;
signal(SIGTERM, shutdownSigHandler);
signal(SIGINT, shutdownSigHandler);
signal(SIGQUIT, shutdownSigHandler);
signal(SIGPIPE, SIG_IGN);
signal(SIGUSR1, SIG_IGN);
signal(SIGUSR2, SIG_IGN);
signal(SIGCHLD, SIG_IGN);
s_startTime = OSUtils::now();
s_geoInit = false;
if (argc < 3) {
printf("Usage: zerotier-root <identity.secret> <config path>" ZT_EOL_S);
return 1;
}
{
std::string myIdStr;
if (! OSUtils::readFile(argv[1], myIdStr)) {
printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S, argv[1]);
return 1;
}
if (! s_self.fromString(myIdStr.c_str())) {
printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S, argv[1]);
return 1;
}
if (! s_self.hasPrivate()) {
printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S, argv[1]);
return 1;
}
}
{
std::string configStr;
if (! OSUtils::readFile(argv[2], configStr)) {
printf("FATAL: cannot read config file at %s" ZT_EOL_S, argv[2]);
return 1;
}
try {
s_config = json::parse(configStr);
}
catch (std::exception& exc) {
printf("FATAL: config file at %s invalid: %s" ZT_EOL_S, argv[2], exc.what());
return 1;
}
catch (...) {
printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S, argv[2]);
return 1;
}
if (! s_config.is_object()) {
printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S, argv[2]);
return 1;
}
}
try {
auto jport = s_config["port"];
if (jport.is_array()) {
for (long i = 0; i < (long)jport.size(); ++i) {
int port = jport[i];
if ((port <= 0) || (port > 65535)) {
printf("FATAL: invalid port in config file %d" ZT_EOL_S, port);
return 1;
}
s_ports.push_back(port);
}
}
else {
int port = jport;
if ((port <= 0) || (port > 65535)) {
printf("FATAL: invalid port in config file %d" ZT_EOL_S, port);
return 1;
}
s_ports.push_back(port);
}
}
catch (...) {
}
if (s_ports.empty())
s_ports.push_back(ZT_DEFAULT_PORT);
std::sort(s_ports.begin(), s_ports.end());
int httpPort = ZT_DEFAULT_PORT;
try {
httpPort = s_config["httpPort"];
if ((httpPort <= 0) || (httpPort > 65535)) {
printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S, httpPort);
return 1;
}
}
catch (...) {
httpPort = ZT_DEFAULT_PORT;
}
std::string planetFilePath;
try {
planetFilePath = s_config["planetFile"];
}
catch (...) {
planetFilePath = "";
}
try {
s_statsRoot = s_config["statsRoot"];
while ((s_statsRoot.length() > 0) && (s_statsRoot[s_statsRoot.length() - 1] == ZT_PATH_SEPARATOR))
s_statsRoot = s_statsRoot.substr(0, s_statsRoot.length() - 1);
if (s_statsRoot.length() > 0)
OSUtils::mkdir(s_statsRoot);
}
catch (...) {
s_statsRoot = "";
}
s_relayMaxHops = ZT_RELAY_MAX_HOPS;
try {
s_relayMaxHops = s_config["relayMaxHops"];
if (s_relayMaxHops > ZT_PROTO_MAX_HOPS)
s_relayMaxHops = ZT_PROTO_MAX_HOPS;
else if (s_relayMaxHops < 0)
s_relayMaxHops = 0;
}
catch (...) {
s_relayMaxHops = ZT_RELAY_MAX_HOPS;
}
try {
s_googleMapsAPIKey = s_config["googleMapsAPIKey"];
std::string geoIpPath = s_config["geoIp"];
if (geoIpPath.length() > 0) {
FILE* gf = fopen(geoIpPath.c_str(), "rb");
if (gf) {
threads.emplace_back(std::thread([gf]() {
try {
char line[1024];
line[1023] = 0;
while (fgets(line, sizeof(line) - 1, gf)) {
InetAddress start, end;
float lat = 0.0F, lon = 0.0F;
int field = 0;
for (char *saveptr = nullptr, *f = Utils::stok(line, ",\r\n", &saveptr); (f); f = Utils::stok(nullptr, ",\r\n", &saveptr)) {
switch (field++) {
case 0:
start.fromString(f);
break;
case 1:
end.fromString(f);
break;
case 2:
lat = strtof(f, nullptr);
break;
case 3:
lon = strtof(f, nullptr);
break;
}
}
if ((start) && (end) && (start.ss_family == end.ss_family) && (lat >= -90.0F) && (lat <= 90.0F) && (lon >= -180.0F) && (lon <= 180.0F)) {
if (start.ss_family == AF_INET) {
s_geoIp4[std::pair<uint32_t, uint32_t>(ip4ToH32(start), ip4ToH32(end))] = std::pair<float, float>(lat, lon);
}
else if (start.ss_family == AF_INET6) {
s_geoIp6[std::pair<std::array<uint64_t, 2>, std::array<uint64_t, 2> >(ip6ToH128(start), ip6ToH128(end))] = std::pair<float, float>(lat, lon);
}
}
}
s_geoInit = true;
}
catch (...) {
}
fclose(gf);
}));
}
}
}
catch (...) {
}
unsigned int ncores = std::thread::hardware_concurrency();
if (ncores == 0)
ncores = 1;
s_run = true;
threads.push_back(std::thread([]() {
std::vector<SharedPtr<RootPeer> > toValidate;
while (s_run) {
{
std::lock_guard<std::mutex> l(s_peersToValidate_l);
toValidate.swap(s_peersToValidate);
}
for (auto p = toValidate.begin(); p != toValidate.end(); ++p) {
if (likely(! (*p)->identityValidated)) {
if (likely((*p)->id.locallyValidate())) {
(*p)->identityValidated = true;
}
else {
{
std::lock_guard<std::mutex> p_l(s_peersByVirtAddr_l);
auto pp = s_peersByVirtAddr.find((*p)->id.address());
if ((pp != s_peersByVirtAddr.end()) && (pp->second == *p)) {
s_peersByVirtAddr.erase(pp);
}
}
{
std::lock_guard<std::mutex> p_l(s_peers_l);
for (auto pp = s_peers.begin(); pp != s_peers.end(); ++pp) {
if (*p == *pp) {
s_peers.erase(pp);
break;
}
}
}
}
}
}
toValidate.clear();
usleep(1000);
}
}));
for (auto port = s_ports.begin(); port != s_ports.end(); ++port) {
for (unsigned int tn = 0; tn < ncores; ++tn) {
struct sockaddr_in6 in6;
memset(&in6, 0, sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = htons((uint16_t)*port);
const int s6 = bindSocket((struct sockaddr*)&in6);
if (s6 < 0) {
std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
exit(1);
}
struct sockaddr_in in4;
memset(&in4, 0, sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = htons((uint16_t)*port);
const int s4 = bindSocket((struct sockaddr*)&in4);
if (s4 < 0) {
std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
exit(1);
}
sockets.push_back(s6);
sockets.push_back(s4);
if (v4Sock < 0)
v4Sock = s4;
if (v6Sock < 0)
v6Sock = s6;
threads.push_back(std::thread([s6, s4]() {
struct sockaddr_in6 in6;
Packet* pkt = new Packet();
for (;;) {
memset(&in6, 0, sizeof(in6));
socklen_t sl = sizeof(in6);
const int pl = (int)recvfrom(s6, pkt->unsafeData(), pkt->capacity(), RECVFROM_FLAGS, (struct sockaddr*)&in6, &sl);
if (pl > 0) {
if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) && (pl <= ZT_PROTO_MAX_PACKET_LENGTH)) {
try {
pkt->setSize((unsigned int)pl);
handlePacket(s6, reinterpret_cast<const InetAddress*>(&in6), *pkt);
}
catch (std::exception& exc) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in6)->toString(ipstr), exc.what());
}
catch (int exc) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in6)->toString(ipstr), exc);
}
catch (...) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in6)->toString(ipstr));
}
}
}
else if (! s_run) {
break;
}
}
delete pkt;
}));
threads.push_back(std::thread([s6, s4]() {
struct sockaddr_in in4;
Packet* pkt = new Packet();
for (;;) {
memset(&in4, 0, sizeof(in4));
socklen_t sl = sizeof(in4);
const int pl = (int)recvfrom(s4, pkt->unsafeData(), pkt->capacity(), RECVFROM_FLAGS, (struct sockaddr*)&in4, &sl);
if (pl > 0) {
if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) && (pl <= ZT_PROTO_MAX_PACKET_LENGTH)) {
try {
pkt->setSize((unsigned int)pl);
handlePacket(s4, reinterpret_cast<const InetAddress*>(&in4), *pkt);
}
catch (std::exception& exc) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in4)->toString(ipstr), exc.what());
}
catch (int exc) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in4)->toString(ipstr), exc);
}
catch (...) {
char ipstr[128];
printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S, reinterpret_cast<const InetAddress*>(&in4)->toString(ipstr));
}
}
}
else if (! s_run) {
break;
}
}
delete pkt;
}));
}
}
// A minimal read-only local API for monitoring and status queries
httplib::Server apiServ;
threads.push_back(std::thread([&apiServ, httpPort]() {
// Human readable status page
apiServ.Get("/", [](const httplib::Request& req, httplib::Response& res) {
std::ostringstream o;
o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S;
o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S;
s_peersByVirtAddr_l.lock();
o << "Peers Online: " << s_peersByVirtAddr.size() << ZT_EOL_S;
s_peersByVirtAddr_l.unlock();
res.set_content(o.str(), "text/plain");
});
apiServ.Get("/metrics", [](const httplib::Request& req, httplib::Response& res) {
std::ostringstream o;
int64_t now = OSUtils::now();
char buf[11];
const char* root_id = s_self.address().toString(buf);
o << "# HELP root_peers_online Number of active peers online" << ZT_EOL_S;
o << "# TYPE root_peers_online gauge" << ZT_EOL_S;
s_peersByVirtAddr_l.lock();
o << "root_peers_online{root_id=\"" << root_id << "\"} " << s_peersByVirtAddr.size() << ZT_EOL_S;
s_peersByVirtAddr_l.unlock();
o << "# HELP root_input_rate Input rate MiB/s" << ZT_EOL_S;
o << "# TYPE root_input_rate gauge" << ZT_EOL_S;
o << "root_input_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_inputRate.perSecond(now) / 1048576.0) << ZT_EOL_S;
o << "# HELP root_output_rate Output rate MiB/s" << ZT_EOL_S;
o << "# TYPE root_output_rate gauge" << ZT_EOL_S;
o << "root_output_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_outputRate.perSecond(now) / 1048576.0) << ZT_EOL_S;
o << "# HELP root_forwarded_rate Forwarded packet rate MiB/s" << ZT_EOL_S;
o << "# TYPE root_forwarded_rate gauge" << ZT_EOL_S;
o << "root_forwarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_forwardRate.perSecond(now) / 1048576.0) << ZT_EOL_S;
o << "# HELP root_discarded_rate Discarded forwards MiB/s" << ZT_EOL_S;
o << "# TYPE root_discarded_rate gauge" << ZT_EOL_S;
o << "root_discarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_discardedForwardRate.perSecond(now) / 1048576.0) << ZT_EOL_S;
res.set_content(o.str(), "text/plain");
});
// Peer list for compatibility with software that monitors regular nodes
apiServ.Get("/peer", [](const httplib::Request& req, httplib::Response& res) {
char tmp[256];
std::ostringstream o;
o << '[';
try {
bool first = true;
std::lock_guard<std::mutex> l(s_peers_l);
for (auto p = s_peers.begin(); p != s_peers.end(); ++p) {
if (first)
first = false;
else
o << ',';
o << "{\"address\":\"" << (*p)->id.address().toString(tmp)
<< "\""
",\"latency\":-1"
",\"paths\":[";
if ((*p)->v4s >= 0) {
o << "{\"active\":true"
",\"address\":\""
<< (*p)->ip4.toIpString(tmp) << "\\/" << (*p)->ip4.port()
<< "\""
",\"expired\":false"
",\"lastReceive\":"
<< (*p)->lastReceive << ",\"lastSend\":" << (*p)->lastSend
<< ",\"preferred\":true"
",\"trustedPathId\":0}";
}
if ((*p)->v6s >= 0) {
if ((*p)->v4s >= 0)
o << ',';
o << "{\"active\":true"
",\"address\":\""
<< (*p)->ip6.toIpString(tmp) << "\\/" << (*p)->ip6.port()
<< "\""
",\"expired\":false"
",\"lastReceive\":"
<< (*p)->lastReceive << ",\"lastSend\":" << (*p)->lastSend << ",\"preferred\":" << (((*p)->ip4) ? "false" : "true") << ",\"trustedPathId\":0}";
}
o << "]"
",\"role\":\"LEAF\""
",\"version\":\""
<< (*p)->vMajor << '.' << (*p)->vMinor << '.' << (*p)->vRev
<< "\""
",\"versionMajor\":"
<< (*p)->vMajor << ",\"versionMinor\":" << (*p)->vMinor << ",\"versionRev\":" << (*p)->vRev << "}";
}
}
catch (...) {
}
o << ']';
res.set_content(o.str(), "application/json");
});
// GeoIP map if enabled
apiServ.Get("/map", [](const httplib::Request& req, httplib::Response& res) {
char tmp[4096];
if (! s_geoInit) {
res.set_content("Not enabled or GeoIP CSV file not finished reading.", "text/plain");
return;
}
std::ostringstream o;
o << ZT_GEOIP_HTML_HEAD;
try {
bool firstCoord = true;
std::pair<uint32_t, uint32_t> k4(0, 0xffffffff);
std::pair<std::array<uint64_t, 2>, std::array<uint64_t, 2> > k6;
k6.second[0] = 0xffffffffffffffffULL;
k6.second[1] = 0xffffffffffffffffULL;
std::unordered_map<InetAddress, std::set<Address>, InetAddressHasher> ips;
{
std::lock_guard<std::mutex> l(s_peers_l);
for (auto p = s_peers.begin(); p != s_peers.end(); ++p) {
if ((*p)->v4s >= 0)
ips[(*p)->ip4].insert((*p)->id.address());
if ((*p)->v6s >= 0)
ips[(*p)->ip6].insert((*p)->id.address());
}
}
for (auto p = ips.begin(); p != ips.end(); ++p) {
if (p->first.isV4()) {
k4.first = ip4ToH32(p->first);
auto geo = std::map<std::pair<uint32_t, uint32_t>, std::pair<float, float> >::reverse_iterator(s_geoIp4.upper_bound(k4));
uint32_t bestRangeSize = 0xffffffff;
std::pair<float, float> bestRangeLatLon;
while (geo != s_geoIp4.rend()) {
if ((geo->first.first <= k4.first) && (geo->first.second >= k4.first)) {
uint32_t range = geo->first.second - geo->first.first;
if (range <= bestRangeSize) {
bestRangeSize = range;
bestRangeLatLon = geo->second;
}
}
else if ((geo->first.first < k4.first) && (geo->first.second < k4.first)) {
break;
}
++geo;
}
if (bestRangeSize != 0xffffffff) {
if (! firstCoord)
o << ',';
firstCoord = false;
o << "{lat:" << bestRangeLatLon.first << ",lng:" << bestRangeLatLon.second << ",_l:\"";
bool firstAddr = true;
for (auto a = p->second.begin(); a != p->second.end(); ++a) {
if (! firstAddr)
o << ',';
o << a->toString(tmp);
firstAddr = false;
}
o << "\"}";
}
}
else if (p->first.isV6()) {
k6.first = ip6ToH128(p->first);
auto geo = std::map<std::pair<std::array<uint64_t, 2>, std::array<uint64_t, 2> >, std::pair<float, float> >::reverse_iterator(s_geoIp6.upper_bound(k6));
while (geo != s_geoIp6.rend()) {
if ((geo->first.first <= k6.first) && (geo->first.second >= k6.first)) {
if (! firstCoord)
o << ',';
firstCoord = false;
o << "{lat:" << geo->second.first << ",lng:" << geo->second.second << ",_l:\"";
bool firstAddr = true;
for (auto a = p->second.begin(); a != p->second.end(); ++a) {
if (! firstAddr)
o << ',';
o << a->toString(tmp);
firstAddr = false;
}
o << "\"}";
break;
}
else if ((geo->first.first < k6.first) && (geo->first.second < k6.first)) {
break;
}
++geo;
}
}
}
}
catch (...) {
res.set_content("Internal error: unexpected exception resolving GeoIP locations", "text/plain");
return;
}
OSUtils::ztsnprintf(tmp, sizeof(tmp), ZT_GEOIP_HTML_TAIL, s_googleMapsAPIKey.c_str());
o << tmp;
res.set_content(o.str(), "text/html");
});
apiServ.listen("127.0.0.1", httpPort, 0);
}));
// In the main thread periodically clean stuff up
int64_t lastCleaned = 0;
int64_t lastWroteStats = 0;
while (s_run) {
sleep(1);
const int64_t now = OSUtils::now();
if ((now - lastCleaned) > 300000) {
lastCleaned = now;
// Old multicast subscription cleanup
{
std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
for (auto a = s_multicastSubscriptions.begin(); a != s_multicastSubscriptions.end();) {
for (auto b = a->second.begin(); b != a->second.end();) {
for (auto c = b->second.begin(); c != b->second.end();) {
if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE)
b->second.erase(c++);
else
++c;
}
if (b->second.empty())
a->second.erase(b++);
else
++b;
}
if (a->second.empty())
s_multicastSubscriptions.erase(a++);
else
++a;
}
}
try {
std::vector<SharedPtr<RootPeer> > toRemove;
toRemove.reserve(1024);
{
std::lock_guard<std::mutex> pbi_l(s_peers_l);
std::vector<SharedPtr<RootPeer> > newPeers;
newPeers.reserve(s_peers.size());
for (auto p = s_peers.begin(); p != s_peers.end(); ++p) {
if ((now - (*p)->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT) {
toRemove.emplace_back();
p->swap(toRemove.back());
}
else {
newPeers.emplace_back();
p->swap(newPeers.back());
}
}
newPeers.swap(s_peers);
}
for (auto p = toRemove.begin(); p != toRemove.end(); ++p) {
{
std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
auto pbv = s_peersByVirtAddr.find((*p)->id.address());
if ((pbv != s_peersByVirtAddr.end()) && (pbv->second == *p)) {
s_peersByVirtAddr.erase(pbv);
}
}
}
}
catch (...) {
}
// Remove old rendezvous entries
{
std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
for (auto lr = s_rendezvousTracking.begin(); lr != s_rendezvousTracking.end();) {
if ((now - lr->second.ts) > ZT_PEER_ACTIVITY_TIMEOUT)
s_rendezvousTracking.erase(lr++);
else
++lr;
}
}
}
// Write stats if configured to do so, and periodically refresh planet file (if any)
if (((now - lastWroteStats) > 15000) && (s_statsRoot.length() > 0)) {
lastWroteStats = now;
try {
if (planetFilePath.length() > 0) {
std::string planetData;
if ((OSUtils::readFile(planetFilePath.c_str(), planetData)) && (planetData.length() > 0)) {
std::lock_guard<std::mutex> pl(s_planet_l);
s_planet = planetData;
}
}
}
catch (...) {
std::lock_guard<std::mutex> pl(s_planet_l);
s_planet.clear();
}
std::string peersFilePath(s_statsRoot);
peersFilePath.append("/.peers.tmp");
FILE* pf = fopen(peersFilePath.c_str(), "wb");
if (pf) {
std::vector<SharedPtr<RootPeer> > sp;
{
std::lock_guard<std::mutex> pbi_l(s_peers_l);
sp.reserve(s_peers.size());
for (auto p = s_peers.begin(); p != s_peers.end(); ++p) {
sp.emplace_back(*p);
}
}
std::sort(sp.begin(), sp.end(), [](const SharedPtr<RootPeer>& a, const SharedPtr<RootPeer>& b) { return (a->id < b->id); });
fprintf(pf, "Address %21s %45s %10s %6s %10s" ZT_EOL_S, "IPv4", "IPv6", "Age(sec)", "Vers", "Fwd(KiB/s)");
{
char ip4[128], ip6[128], ver[128];
for (auto p = sp.begin(); p != sp.end(); ++p) {
if ((*p)->v4s >= 0) {
(*p)->ip4.toString(ip4);
}
else {
ip4[0] = '-';
ip4[1] = 0;
}
if ((*p)->v6s >= 0) {
(*p)->ip6.toString(ip6);
}
else {
ip6[0] = '-';
ip6[1] = 0;
}
OSUtils::ztsnprintf(ver, sizeof(ver), "%d.%d.%d", (*p)->vMajor, (*p)->vMinor, (*p)->vRev);
fprintf(pf, "%.10llx %21s %45s %10.4f %6s" ZT_EOL_S, (unsigned long long)(*p)->id.address().toInt(), ip4, ip6, fabs((double)(now - (*p)->lastReceive) / 1000.0), ver);
}
}
fclose(pf);
std::string peersFilePath2(s_statsRoot);
peersFilePath2.append("/peers");
OSUtils::rm(peersFilePath2);
OSUtils::rename(peersFilePath.c_str(), peersFilePath2.c_str());
}
std::string statsFilePath(s_statsRoot);
statsFilePath.append("/.stats.tmp");
FILE* sf = fopen(statsFilePath.c_str(), "wb");
if (sf) {
fprintf(sf, "Uptime (seconds) : %ld" ZT_EOL_S, (long)((now - s_startTime) / 1000));
s_peersByVirtAddr_l.lock();
fprintf(sf, "Peers : %llu" ZT_EOL_S, (unsigned long long)s_peersByVirtAddr.size());
s_peersByVirtAddr_l.unlock();
s_rendezvousTracking_l.lock();
uint64_t unsuccessfulp2p = 0;
for (auto lr = s_rendezvousTracking.begin(); lr != s_rendezvousTracking.end(); ++lr) {
if (lr->second.count > 6) // 6 == two attempts per edge, one for each direction
++unsuccessfulp2p;
}
fprintf(sf, "Recent P2P Graph Edges : %llu" ZT_EOL_S, (unsigned long long)s_rendezvousTracking.size());
if (s_rendezvousTracking.empty()) {
fprintf(sf, "Recent P2P Success Rate : 100.0000%%" ZT_EOL_S);
}
else {
fprintf(sf, "Recent P2P Success Rate : %.4f%%" ZT_EOL_S, (1.0 - ((double)unsuccessfulp2p / (double)s_rendezvousTracking.size())) * 100.0);
}
s_rendezvousTracking_l.unlock();
fprintf(sf, "Input (MiB/s) : %.4f" ZT_EOL_S, s_inputRate.perSecond(now) / 1048576.0);
fprintf(sf, "Output (MiB/s) : %.4f" ZT_EOL_S, s_outputRate.perSecond(now) / 1048576.0);
fprintf(sf, "Forwarded (MiB/s) : %.4f" ZT_EOL_S, s_forwardRate.perSecond(now) / 1048576.0);
fprintf(sf, "Discarded Forward (MiB/s) : %.4f" ZT_EOL_S, s_discardedForwardRate.perSecond(now) / 1048576.0);
fclose(sf);
std::string statsFilePath2(s_statsRoot);
statsFilePath2.append("/stats");
OSUtils::rm(statsFilePath2);
OSUtils::rename(statsFilePath.c_str(), statsFilePath2.c_str());
}
}
}
// If we received a kill signal, close everything and wait
// for threads to die before exiting.
s_run = false; // sanity check
apiServ.stop();
for (auto s = sockets.begin(); s != sockets.end(); ++s) {
shutdown(*s, SHUT_RDWR);
close(*s);
}
for (auto t = threads.begin(); t != threads.end(); ++t)
t->join();
return 0;
}